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1 Getting Started

Product Overview

In this section...

“Automated HDL Code Generation in the Hardware Development Process”
on page 1-2

“Summary of Key Features” on page 1-3

Automated HDL Code Generation in the Hardware
Development Process
Simulink® HDL Coder™ software lets you generate hardware description
language (HDL) code based on Simulink® models and Stateflow® finite-state
machines. The coder brings the Model-Based Design approach into the domain
of application-specific integrated circuit (ASIC) and field programmable gate
array (FPGA) development. Using the coder, system architects and designers
can spend more time on fine-tuning algorithms and models through rapid
prototyping and experimentation and less time on HDL coding.

Typically, you use a Simulink model to simulate a design intended for
realization as an ASIC or FPGA. Once satisfied that the model meets design
requirements, you run the Simulink HDL Coder compatibility checker
utility to examine model semantics and blocks for HDL code generation
compatibility. You then invoke the coder, using either the command line or
the graphical user interface. The coder generates VHDL or Verilog code that
implements the design embodied in the model.

Usually, you also generate a corresponding test bench. You can use the test
bench with HDL simulation tools to drive the generated HDL code and
evaluate its behavior. The coder generates scripts that automate the process
of compiling and simulating your code in these tools. You can also use EDA
Simulator Link™ MQ, EDA Simulator Link IN or EDA Simulator Link DS
software from The MathWorks™ to cosimulate generated HDL entities within
a Simulink model.

The test bench feature increases confidence in the correctness of the generated
code and saves time spent on test bench implementation. The design and test
process is fully iterative. At any point, you can return to the original model,
make modifications, and regenerate code.
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When the design and test phase of the project has been completed, you
can easily export the generated HDL code to synthesis and layout tools for
hardware realization. The coder generates synthesis scripts for theSynplify®

family of synthesis tools.

Extending the Code Generation Process
There are a number of ways to extend the code generation process.

By attaching a code generation control file to your model, you can direct many
details of the code generation process. At the simplest level, you can use a
control file to set code generation options; such a control file could be used as
a template for code generation in your organization.

Control files also let you specify how code is generated for selected sets
of blocks within the model. The coder provides alternate HDL block
implementations for a variety of blocks. You can use statements in a control
file to select from among implementations optimized for characteristics such
as speed, chip area, or low latency.

In some cases, block-specific optimizations may introduce latencies (delays)
or numeric computations (for example, saturation or rounding operations) in
the generated code that are not in the original model. To help you evaluate
such cases, the coder creates a generated model — a Simulink model that
corresponds exactly to the generated HDL code. This generated model lets
you run simulations that produce results that are bit-true to the HDL code,
and whose timing is cycle-accurate with respect to the HDL code.

You can interface generated HDL code to existing or legacy HDL code. One
way to do this is to use a subsystem in your model as a placeholder for an HDL
entity, and generate a black box interface (comprising I/O port definitions
only) to that entity. Another way is to generate a cosimulation interface by
placing an HDL Cosimulation block in your model.

Summary of Key Features
Key features and components of the coder include

• Generation of synthesizble VHDL or Verilog code from Simulink models
and Stateflow charts
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• Code generation configured and initiated via graphical user interface,
command line interface, or M-file programs

• Test bench generation (VHDL or Verilog) for validating generated code

• Generation of models that are bit-true and cycle-accurate with respect to
generated HDL code

• Numerous options for controlling the contents and style of the generated
HDL code and test bench

• Block support:

- Simulink built-in blocks

- Signal Processing Blockset™ blocks

- EDA Simulator Link MQ HDL Cosimulation block

- EDA Simulator Link IN HDL Cosimulation block

- EDA Simulator Link DS HDL Cosimulation block

- Stateflow chart

- Embedded MATLAB™ Function block

- User-selectable optimized block implementations provided for commonly
used blocks

• Code generation control files support:

- Selection of alternate block implementations for specific blocks or sets of
blocks in the model

- Specification of code generation options (such as input or output
pipelining) for most block implementations

- Setting of general code generation options

- Selection of the model or subsystem from which code is to be generated.

- Definition of default or template HDL code generation settings for your
organization

• Generation of subsystem-based identification comments and mapping files
for easy tracing of HDL entities back to corresponding elements of the
original model

• Generation of interfaces to existing HDL code via:
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- Black box subsystem implementation

- Cosimulation withMentor Graphics® ModelSim® HDL simulator
(requiresEDA Simulator Link MQ )

- Cosimulation with Cadence Incisive® HDL simulator (requires EDA
Simulator Link IN software)

- Cosimulation with Synopsis Discovery VCS HDL simulator (requires
EDA Simulator Link DS software)

• Compatibility checker utility that examines your model for HDL code
generation compatibility, and generates HTML report with hyperlinks
to problematic blocks

• Generation of scripts for EDA tools:

- Mentor Graphics ModelSim

- Synplify

• Model features supported for code generation:

- Real data types (fixed-point and double)

- Complex signals can be used in the test bench without restriction.

- Complex signals can be used in the DUT with a restricted set of blocks
(see “Blocks That Support Complex Data” on page 5-64).

- Fixed-step, discrete, single-rate and multirate models

- Scalar and vector ports (row or column vectors only)
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Expected Users and Prerequisites
Users of this product are system and hardware architects and designers
who develop, optimize, and verify ASICs or FPGAs. These designers are
experienced with VHDL or Verilog but can benefit from automated HDL code
generation.

Users are expected to have prerequisite knowledge in the following areas:

• Hardware design and system integration

• VHDL or Verilog

• MATLAB®

• Simulink®

• Simulink® Fixed Point™

• Signal Processing Blockset™

• HDL simulators, such as the Mentor Graphics® ModelSim® simulator or
Cadence Incisive® simulator

• Synthesis tools, such as Synplify®
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Software Requirements and Installation

In this section...

“Software Requirements” on page 1-7

“Installing the Software” on page 1-8

Software Requirements
The coder requires the following software from The MathWorks™:

• MATLAB®

• Simulink®

• Simulink® Fixed Point™

• Fixed-Point Toolbox™

The following related products are recommended for use with the coder:

• Stateflow®

• Filter Design Toolbox™ (This software is required for generating HDL
code for the Digital Filter block in certain cases. See “Summary of Block
Implementations” on page 5-41.)

• EDA Simulator Link™ IN

• EDA Simulator Link MQ

• EDA Simulator Link DS

• Signal Processing Toolbox™

• Signal Processing Blockset™

Software Requirements for Demos
To operate some demos shipped with this release, the following related
products are required:

• Filter Design Toolbox
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• Filter Design HDL Coder™

• EDA Simulator Link MQ

• Communications Toolbox™ (required to use Viterbi Decoder demo)

• Communications Blockset™ (required to use Viterbi Decoder demo)

• Image Processing Toolbox™ (required to use Image Reconstruction demos)

VHDL and Verilog Language Support
Before installing the coder , make sure that you have compatible compilers
and other tools. Generated code is compatible with HDL compilers, simulators
and other tools that support

• VHDL versions 93 and 02

• Verilog-2001 (IEEE 1364-2001) or later

Installing the Software
For information on installing the required software listed previously, and
optional software, see the MATLAB installation documentation for your
platform.

After completing your installation:

• Read “Before You Generate Code” on page 2-2 to learn about recommended
practices for ensuring that your models are compatible with HDL code
generation.

• Work through the examples in Chapter 2, “Introduction to HDL Code
Generation” to acquaint yourself with the operation of the product.
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Available Help and Demos

In this section...

“Online Help” on page 1-9

“Demos” on page 1-9

Online Help
The following online help is available:

• Online help is available in the MATLAB® Help browser. Click the
Simulink HDL Coder product link in the browser’s Contents pane.

• To view documentation in PDF format, click the Simulink HDL
Coder > Printable Documentation (PDF) link in the browser’s
Contents pane.

• M-help for the command line interface functions makehdl, makehdltb,
checkhdl, hdllib, and hdlsetup is available through the doc and help
commands. For example:

help makehdl

Demos
To access models demonstrating aspects of HDL code generation:

1 In the command-line window, type the following command:

demos

2 The Help window opens.

3 In the Demos pane on the left, select Simulink > Simulink HDL Coder.

4 The right pane displays hyperlinks to the available demos. Click the link to
the desired demo and follow the demo instructions.
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Before You Generate Code
The exercises in this introduction use a preconfigured demo model. All blocks
in this demo model support HDL code generation, and the parameters of the
model itself have been configured properly for HDL code generation.

After you complete the exercises, you will probably proceed to generating
HDL code from your existing models, or newly constructed models. Before you
generate HDL code from your own models, you should do the following to
ensure that your models are HDL code generation compatible:

• Use the hdllib.m utility to create a library of all blocks that are currently
supported for HDL code generation, as described in “Supported Blocks
Library” on page 7-9. By constructing models with blocks from this library,
you can ensure HDL compatibility for all your models.

The set of supported blocks will change in future releases, so you should
rebuild your supported blocks library each time you install a new version
of this product.

• Use the Run Compatibility Checker option (described in “Selecting
and Checking a Subsystem for HDL Compatibility” on page 2-26) to check
HDL compatibility of your model or DUT and generate an HDL Code
Generation Check Report.

Alternatively, you can invoke the checkhdl function (see checkhdl) to run
the compatibility checker.

• Before generating code, use the M-file utility hdlsetup.m, as described in
“Initializing Model Parameters with hdlsetup” on page 2-8 , to set up your
model for HDL code generation quickly and consistently.
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Overview of Exercises
The coder supports HDL code generation in your choice of environments:

• The MATLAB® Command Window supports code generation using the
makehdl, makehdltb, and other functions.

• The Simulink® GUI (the Configuration Parameters dialog box and/or Model
Explorer) provides an integrated view of the model simulation parameters
and HDL code generation parameters and functions.

The hands-on exercises in this chapter introduce you to the mechanics of
generating and simulating HDL code, using the same model to generate code
in both environments. In a series of steps, you will

• Configure a simple model for code generation.

• Generate VHDL code from a subsystem of the model.

• Generate a VHDL test bench and scripts for the Mentor Graphics®

ModelSim® simulator to drive a simulation of the model.

• Compile and execute the model and test bench code in the simulator.

• Generate and simulate Verilog code from the same model.

• Check a model for compatibility with the coder.
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The sfir_fixed Demo Model
These exercises use the sfir_fixed demo model as a source model for HDL
code generation. The model simulates a symmetric finite impulse response
(FIR) filter algorithm, implemented with fixed-point arithmetic. The following
figure shows the top level of the model.

This model employs a division of labor that is useful in HDL design:

• The symmetric_fir subsystem, which implements the filter algorithm, is
the device under test (DUT). An HDL entity will be generated, tested, and
eventually synthesized from this subsystem.

• The top-level model components that drive the subsystem work as a test
bench.
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The top-level model generates 16-bit fixed-point input signals for the
symmetric_fir subsystem. The Signal From Workspace block generates a
test input (stimulus) signal for the filter. The four Constant blocks provide
filter coefficients.

The Scope blocks are used in simulation only. They are virtual blocks, and do
not generate any HDL code.

The following figure shows the symmetric_fir subsystem.

Appropriate fixed-point data types propagate throughout the subsystem.
Inputs inherit the data types of the signals presented to them. Where
required, internal rules of the blocks determine the correct output data type,
given the input data types and the operation performed (for example, the
Product blocks output 32-bit signals).
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The filter outputs a 32-bit fixed-point result at the y_out port, and also
replicates its input (after passing it through several delay stages) at the
delayed_x_out port.

In the exercises that follow, you generate VHDL code that implements the
symmetric_fir subsystem as an entity. You then generate a test bench
from the top-level model. The test bench drives the generated entity, for the
required number of clock steps, with stimulus data generated from the Signal
From Workspace block.
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Generating HDL Code Using the Command Line Interface

In this section...

“Overview” on page 2-7

“Creating a Directory and Local Model File” on page 2-7

“Initializing Model Parameters with hdlsetup” on page 2-8

“Generating a VHDL Entity from a Subsystem” on page 2-10

“Generating VHDL Test Bench Code” on page 2-12

“Verifying Generated Code” on page 2-13

“Generating a Verilog Module and Test Bench” on page 2-14

Overview
This exercise provides a step-by-step introduction to code and test bench
generation commands, their arguments, and the files created by the code
generator. The exercise assumes that you have familiarized yourself with the
demo model (see “The sfir_fixed Demo Model” on page 2-4).

Creating a Directory and Local Model File
Make a local copy of the demo model and store it in a working directory, as
follows.

1 Start the MATLAB® software.

2 Create a directory named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

The sl_hdlcoder_work directory will store a local copy of the demo model
and to store directories and code generated by the coder. The location of the
directory does not matter, except that it should not be within the MATLAB
directory tree.

3 Make the sl_hdlcoder_work directory your working directory, for example:

cd C:\work\sl_hdlcoder_work
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4 To open the demo model, type the following command at the MATLAB
prompt:

demos

5 The Help window opens. In the Demos pane on the left, click the + for
Simulink. Then click the + for Simulink HDL Coder. Then double-click
the list entry for the Symmetric FIR Filter Demo.

The sfir_fixed model opens.

6 Select Save As from the Simulink® File menu and save a local copy of
sfir_fixed.mdl. to your working directory.

7 Leave the sfir_fixed model open and proceed to the next section.

Initializing Model Parameters with hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the M-file utility, hdlsetup.m. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type

hdlsetup('sfir_fixed')

2 Select Save from the File menu, to save the model with its new settings.

Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures the Solver options that are recommended or required by
the coder. These are

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup.)
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• Solver: discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the correct one for simulating
discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time): auto

If Fixed step size is set to auto the step size is chosen automatically, based
on the sample times specified in the model. In the demo model, only the
Signal From Workspace block specifies an explicit sample time (1 s); all other
blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the demo model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup affect error severity levels, data
logging, and model display options. If you want to view the complete set of
model parameters affected by hdlsetup, open hdlsetup.m in the MATLAB
editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications. For
example, hdlsetup sets a default Simulation stop time of 10 s. A total
simulation time of 1000 s would be more realistic for a test of the sfir_fixed
demo model. If you would like to change the simulation time, enter the
desired value into the Simulation stop time field of the Simulink window.
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See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable model
parameters.

Generating a VHDL Entity from a Subsystem
In this section, you will use the makehdl function to generate code for a VHDL
entity from the symmetric_fir subsystem of the demo model. makehdl also
generates script files for third-party HDL simulation and synthesis tools.

makehdl lets you specify numerous properties that control various features
of the generated code. In this example, you will use defaults for all makehdl
properties.

Before generating code, make sure that you have completed the steps
described in “Creating a Directory and Local Model File” on page 2-7 and
“Initializing Model Parameters with hdlsetup” on page 2-8.

To generate code:

1 Select Current Directory from the Desktop menu in the MATLAB
window. This displays the MATLAB Current Directory browser, which
lets you easily access your working directory and the files that will be
generated within it.

2 At the MATLAB prompt, type the command

makehdl('sfir_fixed/symmetric_fir')

This command directs the coder to generate code from the symmetric_fir
subsystem within the sfir_fixed model, using default values for all
properties.

3 As code generation proceeds, the coder displays progress messages. The
process should complete successfully with the message

### HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB editor.
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makehdl compiles the model before generating code. Depending on model
display options (for example, sample time colors, port data types, etc.), the
appearance of the model may change after code generation.

4 By default, makehdl generates VHDL code. Code files and scripts are
written to a target directory. The default target directory is a subdirectory
of your working directory, named hdlsrc.

A folder icon for the hdlsrc directory is now visible in the Current
Directory browser. To view generated code and script files, double-click
the hdlsrc folder icon.

5 The files that makehdl has generated in the hdlsrc directory are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics® ModelSim® compilation
script (vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify® synthesis script

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 7-6).

6 To view the generated VHDL code in the MATLAB editor, double-click the
symmetric_fir.vhd file icon in the Current Directory browser.

At this point it is suggested that you study the ENTITY and ARCHITECTURE
definitions while referring to “HDL Code Generation Defaults” on
page 14-18 in the makehdl reference documentation. The reference
documentation describes the default naming conventions and
correspondences between the elements of a model (subsystems, ports,
signals, etc.) and elements of generated HDL code.

7 Before proceeding to the next section, close any files you have opened in the
editor. Then, click the Go Up One Level button in the Current Directory
browser, to set the current directory back to your sl_hdlcoder_work
directory.

8 Leave the sfir_fixed model open and proceed to the next section.
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Generating VHDL Test Bench Code
In this section, you use the test bench generation function, makehdltb, to
generate a VHDL test bench. The test bench is designed to drive and verify
the operation of the symmetric_fir entity that was generated in the previous
section. A generated test bench includes

• Stimulus data generated by signal sources connected to the entity under
test.

• Output data generated by the entity under test. During a test bench run,
this data is compared to the outputs of the VHDL model, for verification
purposes.

• Clock, reset, and clock enable inputs to drive the entity under test.

• A component instantiation of the entity under test.

• Code to drive the entity under test and compare its outputs to the expected
data.

In addition, makehdltb generates Mentor Graphics ModelSim scripts to
compile and execute the test bench.

This exercise assumes that your working directory is the same as that used in
the previous section. This directory now contains an hdlsrc folder containing
the previously generated code.

To generate a test bench:

1 At the MATLAB prompt, type the command

makehdltb('sfir_fixed/symmetric_fir')

This command generates a test bench that is designed to interface to and
validate code generated from symmetric_fir (or from a subsystem with a
functionally identical interface). By default, VHDL test bench code, as well
as scripts, are generated in the hdlsrc target directory.

2 As test bench generation proceeds, the coder displays progress messages.
The process should complete successfully with the message

### HDL TestBench Generation Complete.
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3 To view generated test bench and script files, double-click the hdlsrc folder
icon in the Current Directory browser. Alternatively, you can click the
hyperlinked names of generated files in the code test bench generation
progress messages.

The files generated by makehdltb are

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads both
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to
initialize the simulator, set up wave window signal displays, and run a
simulation.

4 If you want to view the generated test bench code in the MATLAB editor,
double-click the symmetric_fir.vhd file icon in the Current Directory
browser. You may want to study the code while referring to the makehdltb
reference documentation, which describes the default actions of the test
bench generator.

5 Before proceeding to the next section, close any files you have opened in the
editor. Then, click the Go Up One Level button in the Current Directory
browser, to set the current directory back to your sl_hdlcoder_work
directory.

Verifying Generated Code
You can now take the previously generated code and test bench to an HDL
simulator for simulated execution and verification of results. See “Simulating
and Verifying Generated HDL Code” on page 2-33 for an example of how to
use generated test bench and script files with theMentor Graphics ModelSim
simulator.
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Generating a Verilog Module and Test Bench
The procedures for generating Verilog code differ only slightly from those for
generating VHDL code. This section provides an overview of the command
syntax and the generated files.

Generating a Verilog Module
By default, makehdl generates VHDL code. To override the default and
generate Verilog code, you must pass in a property/value pair to makehdl,
setting the TargetLanguage property to 'verilog', as in this example.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The previous command generates Verilog source code, as well as scripts for
the simulation and the synthesis tools, in the default target directory, hdlsrc.

The files generated by this example command are

• symmetric_fir.v: Verilog code. This file contains a Verilog module
implementing the symmetric_fir subsystem.

• symmetric_fir_compile.do: Mentor Graphics ModelSim compilation
script (vlog command) to compile the generated Verilog code.

• symmetric_fir_synplify.tcl: Synplify synthesis script.

• symmetric_fir_map.txt.: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 7-6).

Generating and Executing a Verilog Test Bench
The makehdltb syntax for overriding the target language is exactly the same
as that for makehdl. The following example generates Verilog test bench code
to drive the Verilog module, symmetric_fir, in the default target directory.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','verilog')

The files generated by this example command are
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• symmetric_fir_tb.v: Verilog test bench code and generated test and
output data.

• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim compilation
script (vlog commands). This script compiles and loads both the entity to be
tested (symmetric_fir.v) and the test bench code (symmetric_fir_tb.v).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to initialize
the simulator, set up wave window signal displays, and run a simulation.

The following listing shows the commands and responses from a test bench
session using the generated scripts.

ModelSim>vlib work

ModelSim> do symmetric_fir_tb_compile.do

# Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

# -- Compiling module symmetric_fir

#

# Top level modules:

# symmetric_fir

# Model Technology ModelSim SE vlog 6.0 Compiler 2004.08 Aug 19 2004

# -- Compiling module symmetric_fir_tb

#

# Top level modules:

# symmetric_fir_tb

ModelSim>do symmetric_fir_tb_sim.do

# vsim work.symmetric_fir_tb

# Loading work.symmetric_fir_tb

# Loading work.symmetric_fir

# **** Test Complete. ****

# Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

# Simulation Breakpoint:Break at

C:/work/sl_hdlcoder_work/vlog_code/symmetric_fir_tb.v line 142

# MACRO ./symmetric_fir_tb_sim.do PAUSED at line 14
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Generating HDL Code Using the GUI

In this section...

“Simulink® HDL Coder™ GUI Overview” on page 2-16

“Creating a Directory and Local Model File” on page 2-19

“Viewing Coder Options in the Configuration Parameters Dialog Box” on
page 2-20

“Creating a Control File” on page 2-22

“Initializing Model Parameters With hdlsetup” on page 2-24

“Selecting and Checking a Subsystem for HDL Compatibility” on page 2-26

“Generating VHDL Code” on page 2-28

“Generating VHDL Test Bench Code” on page 2-30

“Verifying Generated Code” on page 2-32

“Generating Verilog Model and Test Bench Code” on page 2-32

Simulink® HDL Coder™ GUI Overview
You can view and edit options and parameters that affect HDL code generation
in the Configuration Parameters dialog box, or in the Model Explorer.

The following figure shows the top-level HDL Coder options pane as
displayed in the Configuration Parameters dialog box.
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The following figure shows the top-level HDL Coder options pane as
displayed in the Model Explorer.
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If you are not familiar with Simulink® configuration sets and how to view
and edit them in the Configuration Parameters dialog box, see the following
documentation:

• “Configuration Sets”

• “Configuration Parameters Dialog Box”

If you are not familiar with the Model Explorer, see “Exploring, Searching,
and Browsing Models”.

In the hands-on code generation exercises that follow, you will use the
Configuration Parameters dialog box to view and set the coder options and
controls. The exercises use the sfir_fixed demo model (see “The sfir_fixed
Demo Model” on page 2-4) in basic code generation and verification steps.
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Creating a Directory and Local Model File
In this section you will setup the directory and a local copy of the demo model.

Creating a Directory
Start by setting up a working directory:

1 Start the MATLAB® software.

2 Create a directory named sl_hdlcoder_work, for example:

mkdir C:\work\sl_hdlcoder_work

You will use sl_hdlcoder_work to store a local copy of the demo model and
to store directories and code generated by the coder. The location of the
directory does not matter, except that it should not be within the MATLAB
directory tree.

3 Make the sl_hdlcoder_work directory your working directory, for example:

cd C:\work\sl_hdlcoder_work

Making a Local Copy of the Model File
Next, make a copy of the sfir_fixed demo model:

1 To open the demo model, type the following command at the MATLAB
prompt:

demos

The Help window opens.

2 In the Demos pane on the left, click the + for Simulink. Then click the
+ for Simulink HDL Coder. Then double-click the list entry for the
Symmetric FIR Filter Demo.

The sfir_fixed model opens.
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3 Select Save As from the File menu and save a local copy of
sfir_fixed.mdl to your working directory.

4 Leave the sfir_fixed model open and proceed to the next section.

Viewing Coder Options in the Configuration
Parameters Dialog Box
The coder option settings are displayed as a category of the model’s active
configuration set. You can view and edit these options in the Configuration
Parameters dialog box, or in the Model Explorer. This discussion uses the
Configuration Parameters dialog box.

To access the coder settings:

1 Select Configuration Parameters from the Simulation menu in the
sfir_fixed model window.

The Configuration Parameters dialog box opens with the Solver options
pane displayed, as shown in the following figure.
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2 Observe that the Select tree in the left panel of the dialog box includes
an HDL Coder category, as shown.

3 Click the HDL Coder category in the Select tree. The HDL Coder pane
is displayed, as shown in the following figure.
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The HDL Coder pane contains top-level options and buttons that control
the HDL code generation process. Several other categories of options are
available under the HDL Coder entry in the Select tree. This exercise
uses a small subset of these options, leaving the others at their default
settings.

Chapter 3, “Code Generation Options in the Simulink® HDL Coder™ GUI”
summarizes all the options available in the HDL Coder category.

Creating a Control File
Code generation control files (referred to in this document as control files) let
you

• Save your model’s HDL code generation options.

• Extend the HDL code generation process and direct its details.
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A control file is an M-file that you attach to your model, using either the
makehdl command or the Configuration Parameters dialog box. In this
tutorial, you will use a control file to save HDL code generation options. This
is a required step with most models, because HDL code generation settings
are not saved in the .mdl file like other components of a model’s configuration
set. If you want your HDL code generation settings to persist across sessions
with a model, you must save your current settings to a control file. The
control file is then linked to the model, and the linkage is preserved when you
save the model.

When a control file is linked to a model, the control file name is displayed in
the File name field of the top-level HDL Coder options pane. Thesfir_fixed
demo model is attached to the control file sfir_fixed_control.m. This
control file is stored within the MATLAB demo directories and should not be
overwritten. For use in this tutorial, you will save the current HDL code
generation options to a new control file in the working directory. Later in the
tutorial, you will change some options and save them to the control file.
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To save the current HDL code generation options to a new control file:

1 Open the Configuration Parameters dialog box and select the HDL Coder
options pane.

2 Under Code generation control file, click the Save button. A standard
file dialog box opens.

3 Navigate to your current working directory and save the file as
sfir_fixed_control.m.

4 Select Save from the File menu. When you save the model, the control file
linkage information is written to the .mdl file, and the control file linkage
persists in future sessions with your model.

This tutorial uses a control file only as a mechanism for saving HDL code
generation settings. This simple application of a control file does not require
knowledge of any internal details about the file. You can also use a control
file to direct or customize many details of the code generation process. It is
strongly recommended that you read Chapter 5, “Code Generation Control
Files” after completing this tutorial.

Initializing Model Parameters With hdlsetup
Before generating code, you must set some parameters of the model. Rather
than doing this manually, use the M-file utility, hdlsetup.m. The hdlsetup
command uses the set_param function to set up models for HDL code
generation quickly and consistently.

To set the model parameters:

1 At the MATLAB command prompt, type

hdlsetup('sfir_fixed')

2 Select Save from the File menu, to save the model with its new settings.

You do not need to update the control file at this point, because hdlsetup
modifies only the model parameters, not the HDL code generation options.
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Before continuing with code generation, consider the settings that hdlsetup
applies to the model.

hdlsetup configures Solver options that are recommended or required by
the coder. These are

• Type: Fixed-step. (The coder currently supports variable-step solvers
under limited conditions. See hdlsetup.)

• Solver: discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually the correct one for simulating
discrete systems.

• Tasking mode: SingleTasking. The coder does not currently support
models that execute in multitasking mode.

Do not set Tasking mode to Auto.

hdlsetup also configures the model start and stop times and fixed-step size as
follows:

• Start Time: 0.0 s

• Stop Time: 10 s

• Fixed step size (fundamental periodic sample time): auto

If Fixed step size is set to auto the step size is chosen automatically, based
on the sample times specified in the model. In the demo model, only the
Signal From Workspace block specifies an explicit sample time (1 s); all other
blocks inherit this sample time.

The model start and stop times determine the total simulation time. This
in turn determines the size of data arrays that are generated to provide
stimulus and output data for generated test benches. For the demo model,
computation of 10 seconds of test data does not take a significant amount of
time. Computation of sample values for more complex models can be time
consuming. In such cases, you may want to decrease the total simulation time.

The remaining parameters set by hdlsetup affect error severity levels, data
logging, and model display options. If you want to view the complete set of
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model parameters affected by hdlsetup, open hdlsetup.m in the MATLAB
editor.

The model parameter settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications. For
example, hdlsetup sets a default Simulation stop time of 10 s. A total
simulation time of 1000 s would be more realistic for a test of the sfir_fixed
demo model. If you would like to change the simulation time, enter the
desired value into the Simulation stop time field of the Simulink window.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink documentation for a summary of user-settable model
parameters.

Selecting and Checking a Subsystem for HDL
Compatibility
The coder generates code from either the current model or from a subsystem at
the root level of the current model. You use the Generate HDL for menu to
select the model or subsystem from which code is to be generated. Each entry
in the menu shows the full path to the model or one of its subcomponents.

The sfir_fixed demo model is configured with the sfixed_fir/symmetric_fir
subsystem selected for code generation. If this is not the case, make sure that
the symmetric_fir subsystem is selected for code generation, as follows:

1 Select sfixed_fir/symmetric_fir from the Generate HDL for menu.

2 Click Apply. The dialog box should now appear as shown in the following
figure.
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To check HDL compatibility for the subsystem:

1 Click the Run Compatibility Checker button.

2 The HDL compatibility checker examines the system selected in the
Generate HDL for menu for any compatibility problems. In this case, the
selected subsystem is fully HDL-compatible, and the compatibility checker
displays the following message:

### Starting HDL Check.
### HDL Check Complete with 0 errors, warnings and messages.

3 The compatibility checker also displays an HTML report in a Web browser,
as shown in the following figure.
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Generating VHDL Code
The top-level HDL Coder options are now set as follows:

• The Generate HDL for field specifies the sfixed_fir/symmetric_fir
subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.

• The Directory field specifies a target directory that stores generated code
files and scripts. The default target directory is a subdirectory of your
working directory, named hdlsrc.

The following figure shows these settings.
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Before generating code, select Current Directory from the Desktop menu
in the MATLAB window. This displays the Current Directory browser,
which lets you easily access your working directory and the files that will
be generated within it.

To generate code:

1 Click the Generate button.

2 As code generation proceeds, the coder displays progress messages. The
process should complete successfully with the message

### HDL Code Generation Complete.

Observe that the names of generated files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB editor.
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The coder compiles the model before generating code. Depending on model
display options (for example, sample time colors, port data types, etc.), the
appearance of the model may change after code generation.

3 A folder icon for the hdlsrc directory is now visible in the Current
Directory browser. To view generated code and script files, double-click
the hdlsrc folder icon.

4 The files that were generated in the hdlsrc directory are

• symmetric_fir.vhd: VHDL code. This file contains an entity definition
and RTL architecture implementing the symmetric_fir filter.

• symmetric_fir_compile.do: Mentor Graphics® ModelSim® compilation
script (vcom command) to compile the generated VHDL code.

• symmetric_fir_synplify.tcl: Synplify® synthesis script.

• symmetric_fir_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 7-6).

5 To view the generated VHDL code in the MATLAB editor, double-click the
symmetric_fir.vhd file icon in the Current Directory browser.

At this point it is suggested that you study the ENTITY and ARCHITECTURE
definitions while referring to “HDL Code Generation Defaults” on
page 14-18 in the makehdl reference documentation. The reference
documentation describes the default naming conventions and
correspondences between the elements of a model (subsystems, ports,
signals, etc.) and elements of generated HDL code.

6 Before proceeding to the next section, close any files you have opened in the
editor. Then, click the Go Up One Level button in the Current Directory
browser, to set the current directory back to your sl_hdlcoder_work
directory.

Generating VHDL Test Bench Code
At this point, the Generate HDL for, Language, and Directory fields are
set as they were in the previous section. Accordingly, you can now generate
VHDL test bench code to drive the VHDL code generated previously for the
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sfixed_fir/symmetric_fir subsystem. The code will be written to the same
target directory as before.

To generate a test bench:

1 Click the Test Bench entry in the HDL Coder list in the Select tree. The
Test Bench pane is displayed, as shown in the following figure.

2 Click the Generate Test bench button.

3 As test bench generation proceeds, the coder displays progress messages.
The process should complete successfully with the message

### HDL TestBench Generation Complete.

4 The files that were generated in the hdlsrc directory are

• symmetric_fir_tb.vhd: VHDL test bench code and generated test and
output data.
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• symmetric_fir_tb_compile.do: Mentor Graphics ModelSim
compilation script (vcom commands). This script compiles and loads both
the entity to be tested (symmetric_fir.vhd) and the test bench code
(symmetric_fir_tb.vhd).

• symmetric_fir_tb_sim.do: Mentor Graphics ModelSim script to
initialize the simulator, set up wave window signal displays, and run a
simulation.

Verifying Generated Code
You can now take the generated code and test bench to an HDL simulator for
simulated execution and verification of results. See “Simulating and Verifying
Generated HDL Code” on page 2-33 for an example of how to use generated
test bench and script files with theMentor Graphics ModelSim simulator.

Generating Verilog Model and Test Bench Code
The procedure for generating Verilog code is the same as for generating VHDL
code (see “Generating a VHDL Entity from a Subsystem” on page 2-10 and
“Generating VHDL Test Bench Code” on page 2-12), except that you should
select Verilog from the Language field of the HDL Coder options, as shown
in the following figure.

2-32



Simulating and Verifying Generated HDL Code

Simulating and Verifying Generated HDL Code

Note This section requires the use of the Mentor Graphics® ModelSim®

simulator.

This section assumes that you have generated code from the sfir_fixed
demo model as described in either of the following exercises:

• “Generating HDL Code Using the Command Line Interface” on page 2-7

• “Generating HDL Code Using the GUI” on page 2-16

In this section you compile and run a simulation of the previous generated
model and test bench code. The scripts generated by the coder let you do this
with just a few simple commands. The procedure is the same, whether you
generated code in the command line environment or in the GUI.

To run the simulation:

1 Start theMentor Graphics ModelSim software.

2 Set the working directory to the directory in which you previously
generated code.

ModelSim>cd C:/work/sl_hdlcoder_work/hdlsrc

3 Use the generated compilation script to compile and load the generated
model and text bench code. The following listing shows the command and
responses.

ModelSim>do symmetric_fir_tb_compile.do

# Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

# -- Loading package standard

# -- Loading package std_logic_1164

# -- Loading package numeric_std

# -- Compiling entity symmetric_fir

# -- Compiling architecture rtl of symmetric_fir

# Model Technology ModelSim SE vcom 6.0 Compiler 2004.08 Aug 19 2004

# -- Loading package standard
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# -- Loading package std_logic_1164

# -- Loading package numeric_std

# -- Compiling package symmetric_fir_tb_pkg

# -- Compiling package body symmetric_fir_tb_pkg

# -- Loading package symmetric_fir_tb_pkg

# -- Loading package symmetric_fir_tb_pkg

# -- Compiling entity symmetric_fir_tb

# -- Compiling architecture rtl of symmetric_fir_tb

# -- Loading entity symmetric_fir

4 Use the generated simulation script to execute the simulation. The
following listing shows the command and responses. The warning messages
are benign.

ModelSim>do symmetric_fir_tb_sim.do

# vsim work.symmetric_fir_tb

# Loading C:\Applications\ModelTech_6_0\win32/../std.standard

# Loading C:\Applications\ModelTech_6_0\win32/../ieee.std_logic_1164(body)

# Loading C:\Applications\ModelTech_6_0\win32/../ieee.numeric_std(body)

# Loading work.symmetric_fir_tb_pkg(body)

# Loading work.symmetric_fir_tb(rtl)

# Loading work.symmetric_fir(rtl)

# ** Warning: NUMERIC_STD."<": metavalue detected, returning FALSE

# Time: 0 ns Iteration: 0 Instance: /symmetric_fir_tb

.

.

.

# ** Warning: NUMERIC_STD.TO_INTEGER: metavalue detected, returning 0

# Time: 0 ns Iteration: 1 Instance: /symmetric_fir_tb

# ** Note: **************TEST COMPLETED **************

# Time: 140 ns Iteration: 1 Instance: /symmetric_fir_tb

The test bench termination message indicates that the simulation has run
to completion successfully, without any comparison errors.

# ** Note: **************TEST COMPLETED **************

5 The simulation script displays all inputs and outputs in the model
(including the reference signals y_out_ref and delayed_x_out_ref ) in
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the Mentor Graphics ModelSim wave window. The following figure shows
the signals displayed in the wave window.

6 Exit the Mentor Graphics ModelSim simulator when you are through
viewing signals.

7 Close any files you have opened in the MATLAB® editor. Then, click the Go
Up One Level button in the Current Directory browser, to set the current
directory back to your sl_hdlcoder_work directory.
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3 Code Generation Options in the Simulink® HDL Coder™ GUI

Viewing and Setting HDL Coder Options

In this section...

“HDL Coder Options in the Configuration Parameters Dialog Box” on page
3-2

“HDL Coder Options in the Model Explorer” on page 3-3

“HDL Coder Menu” on page 3-4

HDL Coder Options in the Configuration Parameters
Dialog Box
The following figure shows the top-level HDL Coder pane as displayed in
the Configuration Parameters dialog box. To open this dialog box, select
Simulation > Configuration Parameters in the Simulink® window. Then
select HDL Coder from the list on the left.
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If you are not familiar with Simulink configuration sets and how to view and
edit them in the Configuration Parameters dialog box, see the “Configuration
Sets” and “Configuration Parameters Dialog Box” sections of the Simulink
documentation.

Note When the HDL Coder pane of the Configuration Parameters dialog
box is displayed, clicking the Help button displays general help for the
Configuration Parameters dialog box.

HDL Coder Options in the Model Explorer
The following figure shows the top-level HDL Coder pane as displayed in the
Dialog pane of the Model Explorer.

To view this dialog box:

1 Select View > Model Explorer in the Simulink window.

2 Select your model’s active configuration set in the Model Hierarchy tree
on the left.

3 Select HDL Coder from the list in the Contents pane.
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When the HDL Coder pane is selected in the Model Explorer, clicking the
Help button displays the documentation specific to the current tab.

If you are not familiar with the Model Explorer, see “Exploring, Searching,
and Browsing Models”.

HDL Coder Menu
The HDL Coder submenu of the Tools menu (see the following figure)
provides shortcuts to the HDL code generation options. You can also use
this menu to initiate code generation.
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The HDL Coder submenu options are:

• Options: Open the HDL Coder pane in the Configuration Parameters
dialog box.

• Generate HDL: Initiate HDL code generation; equivalent to the Generate
button in the Configuration Parameters dialog box or Model Explorer.

• Generate Test Bench: Initiate test bench code generation; equivalent to
the Generate Test Bench button in the Configuration Parameters dialog
box or Model Explorer. If you do not select a subsystem from the top (root)
level of the current model in the Generate HDL for menu, the Generate
Test Bench menu option is disabled.
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HDL Coder Pane: General

In this section...

“HDL Coder Top-Level Pane Overview” on page 3-7

“File name” on page 3-8

“Generate HDL for” on page 3-9

“Language” on page 3-10

“Directory” on page 3-11

“Code Generation Output” on page 3-12
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HDL Coder Top-Level Pane Overview
The top-level HDL Coder pane contains buttons that initiate code generation
and compatibility checking, and sets parameters that affect overall operation
of code generation.

Buttons in the HDL Coder Top-Level Pane
The buttons in the HDL Coder pane perform important functions related to
code generation and control file linkage and maintenance. These buttons are:

Generate: Initiates code generation for the system selected in the
Generate HDL for menu. See also makehdl.
Run Compatibility Checker: Invokes the compatibility checker to
examine the system selected in the Generate HDL for menu for any
compatibility problems. See also checkhdl.
Browse: Lets you navigate to and select the target directory to which
generated code and script files are written. The path to the target directory
is entered into the Target directory field.
Load: Opens a standard file selection dialog box so that you can navigate
to and select a control file and load it into memory. See also Using Control
Files in the Code Generation Process.
Save: Opens a standard file save dialog box so that you can save current
HDL code generation settings to a specified control file. See also Using
Control Files in the Code Generation Process
Restore Factory Defaults: clears the File Name field and unlinks the
current control file from the model. See also Using Control Files in the
Code Generation Process.
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File name
Displays the path and file name of the currently selected control file (if any).
This is a display-only field.

Settings
Default: No control file name displayed.

• To select a control file, click Load, navigate to the desired control file, and
select it. The File Name field displays the path to the selected file.

• To clear the File Name field and unlink the current control file, click the
Restore Factory Defaults button.

Command-Line Information

Property: HDLControlFiles
Type: string
Value: Pass in a cell array containing a string that specifies a control file
to be attached to the current model.
Default: No control file is specified.

See Also
Using Control Files in the Code Generation Process
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Generate HDL for
Select the subsystem or model from which code is generated. The list includes
the path to the root model and to all root-level subsystems in the model.

Settings
Default: The root model is selected.

Command-Line Information
Pass in the path to the model or subsystem for which code is to be generated
as the first argument to makehdl.

See Also
makehdl
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Language
Select the language (VHDL or Verilog) in which code is generated. The
selected language is referred to as the target language.

Settings
Default: vhdl

VHDL
Generate VHDL code.

Verilog
Generate Verilog code.

Command-Line Information

Property: TargetLanguage
Type: string
Value: 'VHDL' | 'verilog'
Default: 'VHDL'

See Also

• TargetLanguage

• makehdl
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Directory
Enter a path to the directory into which code is generated. Alternatively,
click Browse to navigate to and select a directory. The selected directory is
referred to as the target directory.

Settings
Default: The default target directory is a subdirectory of your working
directory, named hdlsrc.

Command-Line Information

Property: TargetDirectory
Type: string
Value: A valid path to your target directory
Default: 'hdlsrc'

See Also

• TargetDirectory

• makehdl
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Code Generation Output
This radio button group contains options related to the creation and display of
generated models. Click the desired button to select an option.

Settings
Default: Generate HDL code

• Generate HDL code: Generate HDL code without displaying the
generated model.

• Display generated model only: Display the generated model without
generating HDL code.

• Generate HDL Code and display generated model: Display the
generated model after HDL code generation completes.

Command-Line Information

Property: CodeGenerationOutput
Type: string
Value: 'GenerateHDLCode' |
'GenerateHDLCodeAndDisplayGeneratedModel' |
'DisplayGeneratedModelOnly'
Default: 'GenerateHDLCode'

See Also
Defaults and Options for Generated Models
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HDL Coder Pane: Global Settings

In this section...

“Global Settings Overview” on page 3-15

“Reset type” on page 3-16

“Reset asserted level” on page 3-17

“Clock input port” on page 3-18

“Clock enable port” on page 3-19

“Reset input port” on page 3-20

“Comment in header” on page 3-21

“Verilog file extension” on page 3-22

“VHDL file extension” on page 3-23

“Entity conflict postfix” on page 3-24
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In this section...

“Package postfix” on page 3-25

“Reserved word postfix” on page 3-26

“Split entity and architecture” on page 3-27

“Split entity file postfix” on page 3-29

“Split arch file postfix” on page 3-30

“Clocked process postfix” on page 3-31

“Enable prefix” on page 3-32

“Pipeline postfix” on page 3-33

“Complex real part postfix” on page 3-34

“Complex imaginary part postfix” on page 3-34

“Input data type” on page 3-35

“Output data type” on page 3-36

“Clock enable output port” on page 3-38

“Represent constant values by aggregates” on page 3-39

“Use "rising_edge" for registers” on page 3-41

“Loop unrolling” on page 3-42

“Cast before sum” on page 3-43

“Use Verilog `timescale directives” on page 3-44

“Inline VHDL configuration” on page 3-45

“Concatenate type safe zeros” on page 3-46

“Optimize timing controller” on page 3-47
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Global Settings Overview
The Global Settings pane lets you set options to specify detailed
characteristics of the generated code, such as HDL element naming and
whether certain optimizations are applied.
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Reset type
Specifies whether to use asynchronous or synchronous reset logic when
generating HDL code for registers.

Settings
Default: Asynchronous

Asynchronous
Use asynchronous reset logic.

Synchronous
Use synchronous reset logic.

Command-Line Information

Property: ResetType
Type: string
Value: 'async' | 'sync'
Default: 'async'

See Also
ResetType
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Reset asserted level
Specify whether the asserted (active) level of reset input signal is active-high
or active-low.

Settings
Default: Active-high

Active-high
Asserted (active) level of reset input signal is active-high (1).

Active-low
Asserted (active) level of reset input signal is active-low (0).

Command-Line Information

Property: ResetAssertedLevel
Type: string
Value: 'active-high' | 'active-low'
Default: 'active-high'

See Also
ResetAssertedLevel
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Clock input port
Specify the name for the clock input port in generated HDL code.

Settings
Default: clk

Enter a string value to be used as the clock signal name in generated HDL
code. If you specify a string that is a VHDL or Verilog reserved word, the code
generator appends a reserved word postfix string to form a valid VHDL or
Verilog identifier. For example, if you specify the reserved word signal, the
resulting name string would be signal_rsvd.

Command-Line Information

Property: ClockInputPort
Type: string
Value: Any identifier that is legal in the target language
Default: 'clk'

See Also
ClockInputPort
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Clock enable port
Specify the name for the clock enable port in generated HDL code.

Settings
Default: clk_enable

Enter a string value to be used as the clock enable port name in generated
HDL code. If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid VHDL
or Verilog identifier. For example, if you specify the reserved word signal,
the resulting name string would be signal_rsvd.

Tip
The clock enable signal is asserted active-high (1). Thus, the input value must
be high for the generated entity’s registers to be updated.

Command-Line Information

Property: ClockEnableInputPort
Type: string
Value: Any identifier that is legal in the target language
Default: 'clk_enable'

See Also
ClockEnableInputPort
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Reset input port
Enter the name for the reset input port in generated HDL code.

Settings
Default: reset

Enter a string value to be used as the reset input port name in generated
HDL code. If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid VHDL
or Verilog identifier. For example, if you specify the reserved word signal,
the resulting name string would be signal_rsvd.

Tips
If the reset asserted level is set to active-high, the reset input signal is
asserted active-high (1) and the input value must be high (1) for the entity’s
registers to be reset. If the reset asserted level is set to active-low, the reset
input signal is asserted active-low (0) and the input value must be low (0)
for the entity’s registers to be reset.

Command-Line Information

Property: ResetInputPort
Type: string
Value: Any identifier that is legal in the target language
Default: 'reset'

See Also
ResetInputPort
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Comment in header
Specify comment lines in header of generated HDL and test bench files.

Settings
No Default

Text entered in this field generates a comment line in the header of generated
model and test bench files. The code generator adds leading comment
characters as appropriate for the target language. When newlines or linefeeds
are included in the string, the code generator emits single-line comments
for each newline.

Command-Line Information

Property: UserComment
Type: string

See Also
UserComment
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Verilog file extension
Specify the file-name extension for generated Verilog files.

Settings
Default: .v

This field specifies the file-name extension for generated Verilog files.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Command-Line Information

Property: VerilogFileExtension
Type: string
Default: '.v'

See Also
VerilogFileExtension
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VHDL file extension
Specify the file-name extension for generated VHDL files.

Settings
Default: .vhd

This field specifies the file-name extension for generated VHDL files.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: VHDLFileExtension
Type: string
Default: '.vhd'

VHDLFileExtension
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Entity conflict postfix
Specify the string used to resolve duplicate VHDL entity or Verilog module
names in generated code.

Settings
Default: _entity

The specified postfix resolves duplicate VHDL entity or Verilog module
names. For example, in the default case, if the coder detects two entities with
the name MyFilt, the coder names the first entity MyFilt and the second
instance MyFilt_entity.

Command-Line Information

Property: EntityConflictPostfix
Type: string
Value: Any string that is legal in the target language
Default: '_entity'

See Also
EntityConflictPostfix
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Package postfix
Specify a string to append to the model or subsystem name to form name
of a package file.

Settings
Default: _pkg

The coder applies this option only if a package file is required for the design.

Dependency
This option is enabled when:

The target language (specified by the Language option) is VHDL.

The target language (specified by the Language option) is Verilog, and the
Multi-file test bench option is selected.

Command-Line Information

Property: PackagePostfix
Type: string
Value: Any string value that is legal in a VHDL package file name
Default: '_pkg'

See Also
PackagePostfix
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Reserved word postfix
Specify a string to append to value names, postfix values, or labels that are
VHDL or Verilog reserved words.

Settings
Default: _rsvd

The reserved word postfix is applied to identifiers (for entities, signals,
constants, or other model elements) that conflict with VHDL or Verilog
reserved words. For example, if your generating model contains a signal
named mod, the coder r adds the postfix _rsvd to form the name mod_rsvd.

Command-Line Information

Property: ReservedWordPostfix
Type: string
Default: '_rsvd'

See Also
ReservedWordPostfix
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Split entity and architecture
Specify whether generated VHDL entity and architecture code is written to a
single VHDL file or to separate files.

Settings
Default: Off

On
VHDL entity and architecture definitions are written to separate files.

Off
VHDL entity and architecture code is written to a single VHDL file.

Tips
The names of the entity and architecture files derive from the base file name
(as specified by the generating model or subsystem name). By default, postfix
strings identifying the file as an entity (_entity) or architecture (_arch) are
appended to the base file name. You can override the default and specify
your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd, you can
specify that the code reside in MyFIR_entity.vhd and MyFIR_arch.vhd.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Selecting this option enables the following parameters:

• Split entity file postfix

• Split architecture file postfix

Command-Line Information

Property: SplitEntityArch
Type: string
Value: 'on' | 'off'
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Default: 'off'

See Also
SplitEntityArch
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Split entity file postfix
Enter a string to be appended to the model name to form the name of a
generated VHDL entity file.

Settings
Default: _entity

Dependencies
This parameter is enabled by Split entity and architecture.

Command-Line Information

Property: SplitEntityFilePostfix
Type: string
Default: '_entity'

See Also
SplitEntityFilePostfix
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Split arch file postfix
Enter a string to be appended to the model name to form the name of a
generated VHDL architecture file.

Settings
Default: _arch

Dependencies
This parameter is enabled by Split entity and architecture.

Command-Line Information

Property: SplitArchFilePostfix
Type: string
Default: '_arch'

See Also
SplitArchFilePostfix
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Clocked process postfix
Specify a string to append to HDL clock process names.

Settings
Default: _process

The coder uses process blocks for register operations. The label for each of
these blocks is derived from a register name and the postfix _process. For
example, the coder derives the label delay_pipeline_process from the
register name delay_pipeline and the default postfix string _process.

Command-Line Information

Property: ClockProcessPostfix
Type: string
Default: '_process'

See Also
ClockProcessPostfix
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Enable prefix
Specify the base name string for internal clock enables and other flow control
signals in generated code.

Settings
Default: 'enb'

Where only a single clock enable is generated, Enable prefix specifies the
signal name for the internal clock enable signal.

In some cases, multiple clock enables are generated (for example, when a
cascade block implementation for certain blocks is specified). In such cases,
Enable prefix specifies a base signal name for the first clock enable that
is generated. For other clock enable signals, numeric tags are appended to
Enable prefix to form unique signal names. For example, the following code
fragment illustrates two clock enables that were generated when Enable
prefix was set to 'test_clk_enable':

COMPONENT Timing_Controller
PORT( clk : IN std_logic;

reset : IN std_logic;
clk_enable : IN std_logic;
test_clk_enable : OUT std_logic;
test_clk_enable_5_1_0 : OUT std_logic
);

END COMPONENT;

Command-Line Information

Property: EnablePrefix
Type: string
Default: 'enb'

See Also
EnablePrefix
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Pipeline postfix
Specify string to append to names of input or output pipeline registers
generated for pipelined block implementations.

Settings
Default: '_pipe'

Using a control file, you can specify a generation of input and/or output
pipeline registers for selected blocks. The coder appends the string specified by
the Pipeline postfix option when generating code for such pipeline registers.

Command-Line Information

Property: PipelinePostfix
Type: string
Default: '_pipe'

See Also
PipelinePostfix
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Complex real part postfix
Specify string to append to real part of complex signal names.

Settings
Default: '_re'

Enter a string to be appended to the names generated for the real part of
complex signals.

Command-Line Information

Property: ComplexRealPostfix
Type: string
Default: '_re'

See Also
ComplexRealPostfix

Complex imaginary part postfix
Specify string to append to imaginary part of complex signal names.

Settings
Default: '_im'

Enter a string to be appended to the names generated for the imaginary part
of complex signals.

Command-Line Information

Property: ComplexImagPostfix
Type: string
Default: '_im'

See Also
ComplexImagPostfix
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Input data type
Specify the HDL data type for the model’s input ports.

Settings
For VHDL, the options are:

Default: std_logic_vector

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog the options are

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore,
Input data type is disabled when the target language is Verilog.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: InputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: (for VHDL) 'std_logic_vector'
(for Verilog) 'wire'

See Also
InputType
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Output data type
Specify the HDL data type for the model’s output ports.

Settings
For VHDL, the options are:

Default: Same as input data type

Same as input data type
Specifies that output ports have the same type specified by Input data
type.

std_logic_vector
Specifies VHDL type STD_LOGIC_VECTOR.

signed/unsigned
Specifies VHDL type SIGNED or UNSIGNED.

For Verilog the options are:

Default: wire

In generated Verilog code, the data type for all ports is 'wire'. Therefore,
Output data type is disabled when the target language is Verilog.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: OutputType
Type: string
Value: (for VHDL)'std_logic_vector' | 'signed/unsigned'
(for Verilog) 'wire'
Default: If the property is left unspecified, output ports have the same
type specified by InputType.
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See Also
OutputType
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Clock enable output port
Specify the name for the generated clock enable output.

Settings
Default: ce_out

A clock enable output is generated when the design requires one.

Command-Line Information

Property: ClockEnableOutputPort
Type: string
Default: 'ce_out'

See Also
ClockEnableOutputPort
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Represent constant values by aggregates
Specify whether all constants in VHDL code are represented by aggregates,
including constants that are less than 32 bits.

Settings
Default: Off

On
The coder represents all constants as aggregates. The following VHDL
constant declarations show scalars less than 32 bits being declared as
aggregates:

CONSTANT coeff1 :signed(15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0', OTHERS => ', ');

CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => '0',OTHERS => ', ');

Off
The coder represents constants less than 32 bits as scalars and
constants greater than or equal to 32 bits as aggregates. The following
VHDL constant declarations are examples of declarations generated by
default for values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

CONSTANT coeff2 :signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: UseAggregatesForConst
Type: string
Value: 'on' | 'off'
Default: 'off'
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See Also
UseAggregatesForConst
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Use "rising_edge" for registers
Specify whether or not generated code uses the VHDL rising_edge function
to check for rising edges when operating on registers.

Settings
Default: Off

On
Generated code uses the VHDL rising_edge function to check for rising
edges when operating on registers.

Off
Generated code checks for clock events when operating on registers.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: UseRisingEdge
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
UseRisingEdge
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Loop unrolling
Specify whether VHDL FOR and GENERATE loops are unrolled and omitted
from generated VHDL code.

Settings
Default:Off

On
Unroll and omit FOR and GENERATE loops from the generated VHDL
code. (In Verilog code, loops are always unrolled.)

Off
Include FOR and GENERATE loops in the generated VHDL code.

Tips
If you are using an electronic design automation (EDA) tool that does not
support GENERATE loops, select this option to omit loops from your generated
VHDL code.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: LoopUnrolling
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
LoopUnrolling
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Cast before sum
Specify whether operands in addition and subtraction operations are type cast
to the result type before executing the operation.

Settings
Default:On

On
Typecast input values in addition and subtraction operations to the
result type before operating on the values.

Off
Preserve the types of input values during addition and subtraction
operations and then convert the result to the result type.

Command-Line Information

Property: CastBeforeSum
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
CastBeforeSum
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Use Verilog `timescale directives
Specify use of compiler `timescale directives in generated Verilog code.

Settings
Default: On

On
Use compiler `timescale directives in generated Verilog code.

Off
Suppress the use of compiler `timescale directives in generated Verilog
code.

Tips
The `timescale directive provides a way of specifying different delay values
for multiple modules in a Verilog file. This setting does not affect the
generated test bench.

Dependencies
This option is enabled when the target language (specified by the Language
option) is Verilog.

Command-Line Information

Property: UseVerilogTimescale
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
UseVerilogTimescale
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Inline VHDL configuration
Specify whether generated VHDL code includes inline configurations.

Settings
Default: On

On
Include VHDL configurations in any file that instantiates a component.

Off
Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Tip
HDL configurations can be either inline with the rest of the VHDL code for
an entity or external in separate VHDL source files. By default, the coder
includes configurations for a model within the generated VHDL code. If you
are creating your own VHDL configuration files, suppress the generation of
inline configurations.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: InlineConfigurations
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
InlineConfigurations
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Concatenate type safe zeros
Specify use of syntax for concatenated zeros in generated VHDL code.

Settings
Default: On

On
Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

Off
Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and more compact, but it can lead to ambiguous types.

Dependencies
This option is enabled when the target language (specified by the Language
option) is VHDL.

Command-Line Information

Property: SafeZeroConcat
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
SafeZeroConcat
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Optimize timing controller
Optimize timing controller entity for speed and code size by implementing
separate counters per rate

Settings
Default: On

On
The coder generates multiple counters (one counter for each rate in the
model) in the timing controller code. The benefit of this optimization
is that it generates faster logic, and the size of the generated code is
usually much smaller.

Off
The coder generates a timing controller that uses one counter to
generate all rates in the model.

Tip
A timing controller code file (Timing_Controller.vhd or
Timing_Controller.v) is generated if required by the design, for example:

• When code is generated for a multirate model.

• When a cascade block implementation for certain blocks is specified.

This file contains a module defining timing signals (clock, reset, external clock
enable inputs and clock enable output) in a separate entity or module. In a
multirate model, the timing controller entity generates the required rates from
a single master clock using one or more counters and multiple clock enables.

Command-Line Information

Property: OptimizeTimingController
Type: string
Value: 'on' | 'off'
Default: 'on'
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See Also
OptimizeTimingController
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HDL Coder Pane: Test Bench

In this section...

“Test Bench Overview” on page 3-51

“Test bench name postfix” on page 3-52

“Force clock” on page 3-53

“Clock high time (ns)” on page 3-54

“Clock low time (ns)” on page 3-55

“Hold time (ns)” on page 3-57

“Setup time (ns)” on page 3-58

“Force clock enable” on page 3-59

“Clock enable delay (in clock cycles)” on page 3-60

“Force reset” on page 3-62
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In this section...

“Reset length (in clock cycles)” on page 3-63

“Hold input data between samples” on page 3-64

“Initialize test bench inputs” on page 3-65

“Multi-file test bench” on page 3-66

“Test bench data file name postfix” on page 3-68

“Ignore output data checking (number of samples)” on page 3-69

“Generate cosimulation blocks” on page 3-71
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Test Bench Overview
The Test Bench pane lets you set options that determine characteristics of
generated test bench code.

Generate Test Bench Button
The Generate Test Bench button initiates test bench generation for the
system selected in the Generate HDL for menu. See also makehdltb.
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Test bench name postfix
Specify a suffix appended to the test bench name.

Settings
Default: _tb

For example, if the name of your DUT is my_test, the coder adds the default
postfix _tb to form the name my_test_tb.

Command-Line Information

Property: TestBenchPostFix
Type: string
Default: '_tb'

See Also
TestBenchPostFix
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Force clock
Specify whether the test bench forces clock input signals.

Settings
Default: On

On
The test bench forces the clock input signals. When this option is
selected, the clock high and low time settings control the clock waveform.

Off
A user-defined external source forces the clock input signals.

Dependencies
This property enables the Clock high time and Clock high time options.

Command-Line Information

Property: ForceClock
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceClock
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Clock high time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock
input signals high (1).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a square
wave (50% duty cycle) with a period of 10 ns.

Dependencies
This parameter is enabled when Force clock is selected.

Command-Line Information

Property: ClockHighTime
Type: integer
Default: 5

See Also
ClockHighTime

3-54



HDL Coder Pane: Test Bench

Clock low time (ns)
Specify the period, in nanoseconds, during which the test bench drives clock
input signals low (0).

Settings
Default: 5

The Clock high time and Clock low time properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a square
wave (50% duty cycle) with a period of 10 ns.

Dependencies
This parameter is enabled when Force clock is selected.

Command-Line Information

Property: ClockLowTime
Type: integer
Default: 5

See Also
ClockLowTime
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Hold time (ns)
Specify a hold time, in nanoseconds, for input signals and forced reset input
signals.

Settings
Default: 2 (given the default clock period of 10 ns)

The hold time defines the number of nanoseconds (expressed as a positive
integer) that reset input signals and input data are held past the clock rising
edge.

Tips

• The specified hold time must be less than the clock period (specified by the
Clock high time and Clock low time properties).

• This option applies to reset input signals only if Force reset is selected.

Command-Line Information

Property: HoldTime
Type: integer
Value: A positive integer
Default: 2

See Also
HoldTime
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Setup time (ns)
Display setup time for data input signals.

Settings
Default: None

This is a display-only field, showing a value computed as (clock period -
HoldTime ) in nanoseconds.

Dependency
The value displayed in this field depends on the clock rate and the values
of the Hold time property.

Command-Line Information
Because this is a display-only field, there is no corresponding command-line
property.

See Also
HoldTime
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Force clock enable
Specify whether the test bench forces clock enable input signals.

Settings
Default: On

On
The test bench forces the clock enable input signals to active-high (1) or
active-low (0), depending on the setting of the clock enable input value.

Off
A user-defined external source forces the clock enable input signals.

Dependencies
This property enables the Clock enable delay (in clock cycles) option.

Command-Line Information

Property: ForceClockEnable
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceClockEnable
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Clock enable delay (in clock cycles)
Define elapsed time (in clock cycles) between deassertion of reset and
assertion of clock enable

Settings
Default: 1

The Clock enable delay (in clock cycles) property defines the number of
clock cycles elapsed between the time the reset signal is deasserted and the
time the clock enable signal is first asserted. In the figure below, the reset
signal (active-high) deasserts after 2 clock cycles and the clock enable asserts
after a clock enable delay of 1 cycle (the default).

Dependency
This parameter is enabled when Force clock enable is selected.

Command-Line Information

Property: TestBenchClockEnableDelay
Type: integer
Default: 1
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See Also
TestBenchClockEnableDelay
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Force reset
Specify whether the test bench forces reset input signals.

Settings
Default: On

On
The test bench forces the reset input signals.

Off
A user-defined external source forces the reset input signals.

Tips
If you select this option, you can use the Hold time option to control the
timing of a reset.

Command-Line Information

Property: ForceReset
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
ForceReset
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Reset length (in clock cycles)
Define length of time (in clock cycles) during which reset is asserted

Settings
Default: 2

The Reset length (in clock cycles) property defines the number of clock
cycles during which reset is asserted. Reset length (in clock cycles) must
be an integer greater than or equal to 0. The following figure illustrates the
default case, in which the reset signal (active-high) is asserted for 2 clock
cycles.

Dependency
This parameter is enabled when Force reset is selected.

Command-Line Information

Property: Resetlength
Type: integer
Default: 2

See Also
ResetLength
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Hold input data between samples
Specify how long subrate signal values are held in valid state

Settings
Default: On

On
Data values for subrate signals are held in a valid state across N
base-rate clock cycles, where N is the number of base-rate clock cycles
that elapse per subrate sample period. (N is >= 2.)

Off
Data values for subrate signals are held in a valid state for only one
base-rate clock cycle. For the subsequent base-rate cycles, data is in an
unknown state (expressed as 'X') until leading edge of the next subrate
sample period.

Tip
In most cases, the default (On) is the correct setting for Hold input data
between samples. This setting matches the behavior of a Simulink®

simulation, in which subrate signals are always held valid through each
base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is
desirable to clear Hold input data between samples. In this way you can
obtain diagnostic information about when data is in an invalid ('X') state.

Command-Line Information

Property: HoldInputDataBetweenSamples
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also
HoldInputDataBetweenSamples
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Initialize test bench inputs
Specify initial value driven on test bench inputs before data is asserted to DUT

Settings
Default: Off

On
Initial value driven on test bench inputs is'0'.

Off
Initial value driven on test bench inputs is 'X' (unknown).

Command-Line Information

Property: InitializeTestBenchInputs
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
InitializeTestBenchInputs
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Multi-file test bench
Divide generated test bench into helper functions, data, and HDL test bench
code files

Settings
Default: Off

On
Write separate files for test bench code, helper functions, and test bench
data. The file names are derived from the name of the DUT, the Test
bench name postfix property, and the Test bench data file name
postfix property as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target
language is VHDL, the default test bench file names are:

• symmetric_fir_tb.vhd: test bench code

• symmetric_fir_tb_pkg.vhd: helper functions package

• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog,
the default test bench file names are:

• symmetric_fir_tb.v: test bench code

• symmetric_fir_tb_pkg.v: helper functions package

• symmetric_fir_tb_data.v: test bench data

Off
Write a single test bench file containing all HDL test bench code and
helper functions and test bench data.

Dependency
When this property is selected, Test bench data file name postfix is
enabled.

3-66



HDL Coder Pane: Test Bench

Command-Line Information

Property: MultifileTestBench
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
MultifileTestBench
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Test bench data file name postfix
Specify suffix added to test bench data file name when generating multi-file
test bench.

Settings
Default:'_data'

The coder applies the Test bench data file name postfix string only
when generating a multi-file test bench (i.e. when Multi-file test bench
is selected.)

For example, if the name of your DUT is my_test, and Test bench name
postfix has the default value _tb, the coder adds the postfix _data to form
the test bench data file name my_test_tb_data.

Dependency
This parameter is enabled by Multi-file test bench.

Command-Line Information

Property: TestBenchDataPostFix
Type: string
Default: '_data'

See Also
TestBenchDataPostFix
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Ignore output data checking (number of samples)
Specify number of samples during which output data checking is suppressed.

Settings
Default: 0

The value must be a positive integer.

When the value N of Ignore output data checking (number of samples)
is greater than zero, the test bench suppresses output data checking for the
first N output samples after the clock enable output (ce_out) is asserted.

When using pipelined block implementations, output data may be in an
invalid state for some number of samples. To avoid spurious test bench errors,
determine this number and set Ignore output data checking (number of
samples) accordingly.

Be careful to specify N correctly as a number of samples, not as a number of
clock cycles. For a single-rate model, these are equivalent, but they are not
equivalent for a multirate model.

You should use Ignore output data checking (number of samples) in
cases where there is any state (register) initial condition in the HDL code that
does not match the Simulink state, including the following specific cases:

• When you specify the'OutputPipeline' parameter for the Embedded
MATLAB™ Function block

• When you specify the {'ResetType','None'} parameter for any of the
following block types:

- Integer Delay

- Tapped Delay

- Unit Delay

- Unit Delay Enabled

• When generating a black box interface to existing manually-written HDL
code.
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Command-Line Information

Property: IgnoreDataChecking
Type: integer
Default: 0

See Also
IgnoreDataChecking
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Generate cosimulation blocks
Generate a model containing HDL Cosimulation block(s) for use in testing
the DUT.

Settings
Default: Off

On
When this option is selected, if your installation is licensed for one or
more of the following HDL simulation products, the coder generates
and opens a model that contains an HDL Cosimulation block for each
licensed product:

• EDA Simulator Link™ MQ

• EDA Simulator Link IN

• EDA Simulator Link DS

The generated HDL Cosimulation blocks are configured to conform to
the port and data type interface of the DUT selected for code generation.
By connecting an HDL Cosimulation block to your model in place of the
DUT, you can cosimulate your design with the desired simulator.

Off
Do not generate HDL Cosimulation blocks.

Command-Line Information

Property: GenerateCoSimBlock
Type: string
Value: 'on' | 'off'
Default: 'off'

See Also
GenerateCoSimBlock
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HDL Coder Pane: EDA Tool Scripts

In this section...

“EDA Tool Scripts Overview” on page 3-74

“Generate EDA scripts” on page 3-75

“Compile file postfix” on page 3-76

“Compile Initialization” on page 3-77

“Compile command for VHDL” on page 3-78

“Compile command for Verilog” on page 3-79

“Compile termination” on page 3-80

“Simulation file postfix” on page 3-81

“Simulation initialization” on page 3-82

“Simulation command” on page 3-83
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In this section...

“Simulation waveform viewing command” on page 3-84

“Simulation termination” on page 3-85

“Synthesis file postfix” on page 3-86

“Synthesis initialization” on page 3-87

“Synthesis command” on page 3-88

“Synthesis termination” on page 3-89
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EDA Tool Scripts Overview
The EDA Tool Scripts pane lets you set all options that control generation of
script files for third-party HDL simulation and synthesis tools.
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Generate EDA scripts
Enable generation of script files for third-party electronic design automation
(EDA) tools. These scripts let you compile and simulate generated HDL code
and/or synthesize generated HDL code.

Settings
Default: On

On
Generation of script files is enabled.

Off
Generation of script files is disabled.

Command-Line Information

Parameter: EDAScriptGeneration
Type: string
Value: 'on' | 'off'
Default: 'on'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• EDAScriptGeneration
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Compile file postfix
Specify a postfix string appended to the DUT or test bench name to form the
compilation script file name.

Settings
Default: _compile.do

For example, if the name of the device under test or test bench is
my_design, the coder adds the postfix _compile.do to form the name
my_design_compile.do.

Command-Line Information

Property: HDLCompileFilePostfix
Type: string
Default: '_compile.do'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLCompileFilePostfix
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Compile Initialization
Specify a format string passed to fprintf to write the Init section of the
compilation script.

Settings
Default: vlib work\n

The Init phase of the script performs any required setup actions, such as
creating a design library or a project file.

Command-Line Information

Property: HDLCompileInit
Type: string
Default: 'vlib work\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLCompileInit
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Compile command for VHDL
Specify a format string passed to fprintf to write the Cmd section of the
compilation script for VHDL files.

Settings
Default: vcom %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per
generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

The two arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags to '' (the default).

Command-Line Information

Property: HDLCompileVHDLCmd
Type: string
Default: 'vcom %s %s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLCompileVHDLCmd
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Compile command for Verilog
Specify a format string passed to fprintf to write the Cmd section of the
compilation script for Verilog files.

Settings
Default: vlog %s %s\n

The command-per-file phase (Cmd) of the script is called iteratively, once per
generated HDL file or once per signal. On each call, a different file or signal
name is passed in.

The two arguments in the compile command are the contents of the
SimulatorFlags property and the file name of the current entity or module.
To omit the flags, set SimulatorFlags property to '' (the default).

Command-Line Information

Property: HDLCompileVerilogCmd
Type: string
Default: 'vlog %s %s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLCompileVerilogCmd
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Compile termination
Specify a format string passed to fprintf to write the termination portion of
the compilation script.

Settings
Default: empty string

The termination phase (Term) is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase. The Term phase takes no arguments.

Command-Line Information

Property: HDLCompileTerm
Type: string
Default: ''

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLCompileTerm
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Simulation file postfix
Specify a postfix string appended to the DUT or test bench name to form the
simulation script file name.

Settings
Default: _sim.do

For example, if the name of the device under test or test bench is my_design,
the coder adds the postfix _sim.do to form the name my_design_sim.do.

Command-Line Information

Property: HDLSimFilePostfix
Type: string
Default: '_sim.do'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSimFilePostfix
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Simulation initialization
Specify a format string passed to fprintf to write the initialization section of
the simulation script.

Settings
Default: The default string is

['onbreak resume\nonerror resume\n']

The Init phase of the script performs any required setup actions, such as
creating a design library or a project file.

Command-Line Information

Property: HDLSimInit
Type: string
Default: ['onbreak resume\nonerror resume\n']

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSimInit
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Simulation command
Specify a format string passed to fprintf to write the simulation command.

Settings
Default: vsim work.%s\n

The implicit argument is the top-level module or entity name.

Command-Line Information

Property: HDLSimCmd
Type: string
Default: 'vsim work.%s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSimCmd
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Simulation waveform viewing command
Specify the waveform viewing command written to simulation script.

Settings
Default: add wave sim:%s\n

The implicit argument is the top-level module or entity name.

Command-Line Information

Property: HDLSimViewWaveCmd
Type: string
Default: 'add wave sim:%s\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSimViewWaveCmd
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Simulation termination
Specify a format string passed to fprintf to write the termination portion of
the simulation script.

Settings
Default: run -all\n

The termination phase (Term).is the final execution phase of the script. One
application of this phase is to execute a simulation of HDL code that was
compiled in the Cmd phase. The Term phase takes no arguments.

Command-Line Information

Property: HDLSimTerm
Type: string
Default: 'run -all\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSimTerm
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Synthesis file postfix
Specify a postfix string appended to file name for generated Synplify®

synthesis scripts.

Settings
Default: _synplify.tcl

For example, if the name of the device under test is my_design, the coder adds
the postfix _synplify.tcl to form the name my_design_synplify.tcl.

Command-Line Information

Property: HDLSynthFilePostfix
Type: string
Default: '_synplify.tcl'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSynthFilePostfix
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Synthesis initialization
Specify a format string passed to fprintf to write the initialization section of
the synthesis script.

Settings
Default: project -new %s.prj\n

The default string is a synthesis project creation command. The implicit
argument is the top-level module or entity name.

Command-Line Information

Property: HDLSynthInit
Type: string
Default: 'project -new %s.prj\n'

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSynthInit
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Synthesis command
Specify a format string passed to fprintf to write the synthesis command.

Settings
Default: add_file %s\n

The implicit argument is the top-level module or entity name.

Command-Line Information

Property: HDLSynthCmd
Type: string
Default: add_file %s\n

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSynthCmd
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Synthesis termination
Specify a format string passed to fprintf to write the termination portion of
the synthesis script.

Settings
Default:

['set_option -technology VIRTEX4\n',...
'set_option -part XC4VSX35\n',...
'set_option -synthesis_onoff_pragma 0\n',...
'set_option -frequency auto\n',...
'project -run synthesis\n']

The termination phase (Term) is the final execution phase of the script. The
Term phase takes no arguments.

Command-Line Information

Property: HDLSynthTerm
Type: string
Default: ['set_option -technology VIRTEX4\n', 'set_option
-part XC4VSX35\n','set_option -synthesis_onoff_pragma
0\n','set_option -frequency auto\n','project -run
synthesis\n']

See Also

• Controlling Script Generation with the EDA Tool Scripts GUI Panel

• HDLSynthTerm
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4 Generating HDL Code for Multirate Models

Overview
The coder supports HDL code generation for single-clock, single-tasking
multirate models. Your model can include blocks running at multiple sample
rates:

• Within the device under test (DUT).

• In the test bench driving the DUT. In this case, the DUT inherits multiple
sample rates from its inputs or outputs.

• In both the test bench and the DUT.

HDL code generated from multirate models employs a single clock. A timing
controller (Timing_Controller) entity generates the required rates from a
single master clock using one or more counters and multiple clock enables.
The master clock rate (always the fastest rate in the model) is referred to as
the base rate. The rates generated from the master clock are referred to as
subrates. The Timing_Controller entity definition is written to a separate
code file (Timing_Controller.vhd or Timing_Controller.v).

In general, generating HDL code for a multirate model does not differ greatly
from generating HDL code for a single-rate model. However, there are a few
requirements and restrictions on the configuration of the model and the use of
specialized blocks (such as Rate Transitions) that apply to multirate models.
These are discussed in the following sections.
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Configuring Multirate Models for HDL Code Generation

In this section...

“Overview” on page 4-3

“Configuring Model Parameters” on page 4-3

“Configuring Sample Rates in the Model” on page 4-4

“Constraints for Rate Transition Blocks and Other Blocks in Multirate
Models” on page 4-4

Overview
Certain requirements and restrictions apply to multirate models that are
intended for HDL code generation. This section provides guidelines on how to
configure model and block parameters to meet these requirements.

Configuring Model Parameters
Before generating HDL code, configure the parameters of your model using
the hdlsetup command. This ensures that your multirate model is set up
correctly for HDL code generation. This section summarizes settings applied
to the model by hdlsetup that are relevant to multirate code generation.
These include:

• Solver options that are recommended or required for HDL code generation:

- Type: Fixed-step.

- Solver: discrete (no continuous states). Other fixed-step solvers
could be selected, but this option is usually correct for simulating
discrete systems.

- Tasking mode: Must be explicitly set to SingleTasking. Do not set
Tasking mode to Auto.

• hdlsetup configures the following Diagnostics / Sample time options for
all models:

- Multitask rate transition: error

- Single task rate transition: error
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In multirate models intended for HDL code generation, Rate Transition
blocks must be explicitly inserted when blocks running at different rates
are connected. Setting Multitask rate transition and Single task rate
transition to error ensures that any illegal rate transitions are detected
before code is generated.

Configuring Sample Rates in the Model
The coder requires that at least one valid sample rate (sample time > 0) must
exist in the model. If all rates are 0, –1, or –2, the code generator (makehdl)
and compatibility checker (checkhdl) terminates with an error message.

Constraints for Rate Transition Blocks and Other
Blocks in Multirate Models
This section describes constraints you should observe when configuring Rate
Transition, Upsample, Downsample, Zero-Order Hold, and various types of
delay blocks in multirate models intended for HDL code generation.

Rate Transition Blocks
Rate Transition blocks must be explicitly inserted into the signal path when
blocks running at different rates are connected. For general information about
the Rate Transition block, see the Rate Transition block documentation.

Make sure the data transfer properties for Rate Transition blocks are set as
follows:

• Ensure deterministic data transfer: Selected.

• Ensure data integrity during data transfer: Selected.

Upsample
When configuring Upsample blocks, set Frame based mode to Maintain
input frame size.

When the Upsample block is in this mode, Initial conditions has no effect
on generated code.
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Downsample
Configure Downsample blocks as follows:

• Set Frame based mode to Maintain input frame size.

• Set Sample based mode to Allow multirate.

Given these Downsample block settings, Initial conditions has no effect on
generated code if Sample offset is set to 0.

Delay and Zero-Order Hold Blocks
Use Rate Transition blocks, rather than any of the following block types, to
create rate transitions in models intended for HDL code generation:

• Unit Delay

• Unit Delay Enabled

• Integer Delay

• Tapped Delay

• Zero-Order Hold

All types of Delay blocks listed should be configured to have the same input
and output sample rates.

Zero-Order Hold blocks must be configured with inherited (–1) sample times.
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Example: Model With a Multirate DUT
The following block diagram shows the interior of a subsystem containing
blocks that are explicitly configured with different sample times. The upper
and lower Counter Free-Running blocks have sample times of 10 s and 20 s
respectively. The counter output signals are routed to output ports ST10 and
ST20, which inherit their sample times. The signal path terminating at ST10
runs at the base rate of the model; the signal path terminating at ST20 is a
subrate signal, running at half the base rate of the model.

As shown in the next figure, the outputs of the multirate DUT drive To
Workspace blocks in the test bench. These blocks inherit the sample times
of the DUT outputs.
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The following listing shows the VHDL entity declaration generated for the
DUT.

ENTITY DUT IS

PORT( clk : IN std_logic;

reset : IN std_logic;

clk_enable : IN std_logic;

ce_out_0 : OUT std_logic;

ce_out_1 : OUT std_logic;

ST10 : OUT std_logic_vector(7 DOWNTO 0); -- uint8

ST20 : OUT std_logic_vector(5 DOWNTO 0) -- ufix6

);

END DUT;

The entity has the standard clock, reset, and clock enable inputs and data
outputs for the ST10 and ST20 signals. In addition, the entity has two clock
enable outputs (ce_out_0 and ce_out_1). These clock enable outputs replicate
internal clock enable signals maintained by the TimingController entity.

The following figure, showing a portion of a Mentor Graphics® ModelSim®

simulation of the generated VHDL code, lets you observe the timing
relationship of the base rate clock (clk), the clock enables, and the computed
outputs of the model.

After the assertion of clk_enable (replicated by ce_out_0), a new value is
computed and output to ST10 for every cycle of the base rate clock.
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A new value is computed and output for subrate signal ST20 for every other
cycle of the base rate clock. An internal signal, enb_1_2_1 (replicated by
ce_out_1) governs the timing of this computation.
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Properties Supporting Multirate Code Generation

In this section...

“Overview” on page 4-9

“HoldInputDataBetweenSamples” on page 4-9

“OptimizeTimingController” on page 4-9

Overview
This section summarizes coder properties that provide additional control over
multirate code generation.

HoldInputDataBetweenSamples
This property determines how long (in terms of base rate clock cycles) data
values for subrate signals are held in a valid state.

When 'on' (the default), data values for subrate signals are held in a valid
state across each subrate sample period.

When 'off', data values for subrate signals are held in a valid state for only
one base-rate clock cycle. See HoldInputDataBetweenSamples for details.

OptimizeTimingController
This property specifies whether the timing controller generates the required
rates using multiple counters per rate (the default) or a single counter. The
use of multiple counters optimizes generated code for speed and area. See
OptimizeTimingController for details.
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Overview of Control Files

Overview of Control Files

In this section...

“What is a Control File?” on page 5-3

“Selectable Block Implementations and Implementation Parameters” on
page 5-4

“Implementation Mappings” on page 5-5

“Control File Demo” on page 5-5

What is a Control File?
Code generation control files (referred to in this document as control files) let
you

• Save your model’s HDL code generation options in a persistent form.

• Extend the HDL code generation process and direct its details.

A control file is an M-file that you attach to your model, using either the
makehdl command or the Configuration Parameters dialog box. You do not
need to know any internal details of the code generation process to use a
control file.

In the current release, control files support the following statement types:

• Selection/action statements provide a general framework for the
application of different types of transformations to selected model
components. Selection/action statements select a group of blocks within
your model, and specify an action to be executed when code is generated
for each block in the selected group.

Selection criteria include block type and location within the model. For
example, you might select all built-in Gain blocks at or below the level of a
certain subsystem within your model.

A typical action applied to such a group of blocks is to direct the code
generator to execute a specific block implementation method when
generating HDL code for the selected blocks. For example, for Gain blocks,
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you might choose a method that generates code that is optimized for speed
or chip area.

• Property setting statements let you

- Select the model or subsystem from which code is to be generated.

- Set the values of code generation properties to be passed to the code
generator. The properties and syntax are the same as those used for the
makehdl command.

- Set up default or template HDL code generation settings for your
organization.

Selectable Block Implementations and
Implementation Parameters
Selection/action statements provide a general framework that lets you define
how the coder acts upon selected model components. The current release
supports one such action: execution of block implementation methods.

Block implementation methods are code generator components that emit HDL
code for the blocks in a model. This document refers to block implementation
methods as block implementations or simply implementations.

The coder provides at least one block implementation for every supported
block . This is called the default implementation. In addition, the coder
provides selectable alternate block implementations for certain block types.
Each implementation is optimized for different characteristics, such as speed
or chip area. For example, you can choose Gain block implementations that
use canonic signed digit (CSD) techniques (reducing area), or use a default
implementation that retains multipliers.

For many block implementations, you can set implementation parameters that
provide a further level of control over how code is generated for a particular
implementation. For example, many blocks support the 'OutputPipeline'
implementation parameter. This parameter lets you specify the generation of
output pipeline stages for selected blocks by passing in the required pipeline
depth as the parameter value.
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Implementation Mappings
Control files let you specify one or more implementation mappings that control
how HDL code is to be generated for a specified group of blocks within the
model. An implementation mapping is an association between a selected block
or set of blocks within the model and a block implementation.

To select the set of blocks to be mapped to a block implementation, you specify

• A modelscope: a Simulink® block path (which could incorporate an entire
model or sublevel of the model, or a specific subsystem or block)

• A blocktype: a Simulink block type that corresponds to the selected block
implementation

During code generation, each defined modelscope is searched for instances of
the associated blocktype. For each such block instance encountered, the code
generator uses the selected block implementation.

Control File Demo
The “Getting Started with Control Files” demo illustrates the use of simple
control files to define implementation mappings and generate Verilog
code. The demo is located in the Demos pane on the left of the MATLAB®

Help browser. To run the demo, select Simulink > Simulink HDL
Coder > Getting Started with Control Files in the Demos pane. Then
follow the demo instructions.

5-5



5 Code Generation Control Files

Structure of a Control File
The required elements for a code generation control file are as follows:

• A control file is an M-file that implements a single function, which is
invoked during the code generation process.

The function must instantiate a code generation control object, set its
properties, and return the object to the code generator.

Setting up a code generation control object requires the use of a small
number of methods, as described in “Code Generation Control Objects and
Methods” on page 5-8. You do not need to know internal details of the code
generation control object or the class to which it belongs.

The object is constructed using the hdlnewcontrol function. The argument
to hdlnewcontrol is the name of the control file itself. Use the mfilename
function to pass in the file name, as shown in the following example.

function c = dct8config
c = hdlnewcontrol(mfilename);

% Set target language for Verilog.
c.set('TargetLanguage','Verilog');

% Set top-level subsystem from which code is generated.
c.generateHDLFor('dct8_fixed/OneD_DCT8');

• Following the constructor call, your code will invoke methods of the
code generation control object. The previous example calls the set and
generateHDLFor methods. These and all other public methods of the object
are discussed in “Code Generation Control Objects and Methods” on page
5-8.

• Your control file must be attached to your model before code generation,
as described in “Using Control Files in the Code Generation Process” on
page 5-16. The interface between the code generator and your attached
control file is automatic.

• A control file must be located in either the current working directory, or a
directory that is in the MATLAB® path.
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However, your control files should not be located within the MATLAB
directory tree because they could be overwritten by subsequent
installations.
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Code Generation Control Objects and Methods

In this section...

“Overview” on page 5-8

“hdlnewcontrol” on page 5-8

“forEach” on page 5-8

“forAll” on page 5-13

“set” on page 5-13

“generateHDLFor” on page 5-14

“hdlnewcontrolfile” on page 5-15

Overview
Code generation control objects are instances of the class
slhdlcoder.ConfigurationContainer. This section describes the public
methods of that class that you can use in your control files. All other methods
of this class are for MathWorks internal development use only. The methods
are described in the following sections:

hdlnewcontrol
The hdlnewcontrol function constructs a code generation control object. The
syntax is

object = hdlnewcontrol(mfilename);

The argument to hdlnewcontrol is the name of the control file itself. Use the
mfilename function to pass in the file name string.

forEach
This method establishes an implementation mapping between an HDL block
implementation and a selected block or set of blocks within the model. The
syntax is

object.forEach({'modelscopes'}, ...
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'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

The forEach method selects a set of blocks (modelscopes) that is searched,
during code generation, for instances of a specified type of block (blocktype).
Code generation for each block instance encountered uses the HDL block
implementation specified by the implementation parameter.

Note You can use the hdlnewforeach function to generate forEach method
calls for insertion into your control files. See “Generating Selection/Action
Statements with the hdlnewforeach Function” on page 5-26 for more
information.

The following table summarizes the arguments to the forEach method.

Argument Type Description

block_parms Cell
array
of
strings

Reserved for future use. Pass in an empty cell array ({}) as
placeholder.

blocktype String Block specification that identifies the type of block that
is to be mapped to the HDL block implementation. Block
specification syntax is the same as that used in the
add-block command. For built-in blocks, the blocktype
is of the form

'built-in/blockname'

For other blocks, blocktype must include the full path to the
library containing the block, for example:

'dsparch4/Digital Filter'
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Argument Type Description

implementation String An HDL block implementation to be used in code generation
for all blocks that meet the modelscope and blocktype
search criteria. Specify implementation as package.class,
for example:

hdldefaults.GainMultHDLEmission

“Specifying Block Implementations and Parameters in the
Control File” on page 5-25 lists available implementations.

implementation_parms Cell
array
of p/v
pairs

Cell array of property/value pairs that set code generation
parameters for the block implementation specified by
the implementation argument. Specify parameters
as:'Property', value
where 'Property' is the name of the property and value is
the value applied to the property. If the implementation has
no parameters, or you want to use default parameters, pass
in an empty cell array ({}) .

“Block Implementation Parameters” on page 5-60 describes
the syntax of each parameter, and describes how the
parameter affects generated code.

“Summary of Block Implementations” on page 5-41 lists
supported blocks and their implementations and parameters.

You can use the hdlnewforeach function to obtain the
parameter names for selected block(s) in a model. See
“Specifying Block Implementations and Parameters in the
Control File” on page 5-25.
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Argument Type Description

modelscopes String
or cell
array
of
strings

Strings defining one or more Simulink® paths:

{'path1' 'path2'...'pathN'}

Each path defines a modelscope: a set of blocks that
participate in an implementation mapping. The set of
blocks in a modelscope could include the entire model, all
blocks at a specified level of the model, or a specific block or
subsystem. A path terminating in a wildcard ('*') includes
all blocks at or below the model level specified by the path.
Syntax for modelscope paths is

• 'model/*': all blocks in the model

• 'model/subsyslevel/block': a specific block within a
specific level of the model

• 'model/subsyslevel/subsystem': a specific subsystem
block within a specific level of the model

• 'model/subsyslevel/*': any block within a specific
model level

You can use the period (.) to represent the root-level model
at the top of a modelscope, instead of explicitly -coding the
model name. For example: './subsyslevel/block'. See
also “Representation of the Root Model in modelscopes” on
page 5-11 and “Resolution of modelscopes” on page 5-12.

Representation of the Root Model in modelscopes
You can represent the root-level model at the top of a modelscope as:

• The full model name, as in the following listing:

cfg.forEach( 'aModel/Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'hdldefaults.MinMaxCascadeHDLEmission');

If you explicitly code the model name in a modelscope, and then save the
model under a different name, the control file becomes invalid because it
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references the previous model name. It is then necessary to edit the control
file and change all such modelscopes to reference the new model.

• The period (.) character, representing the current model as an abstraction,
as in the following listing:

cfg.forEach( './Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'hdldefaults.MinMaxCascadeHDLEmission');

If you represent the model in this way, and then save the model under a
different name, the control file does not require any change. Using the
period to represent the root-level model makes the modelscope independent
of the model name, and therefore more portable.

When you save HDL code generation settings to a control file, the period is
used to represent the root-level model.

Resolution of modelscopes
A possible conflict exists in the forEach specifications in the following
example:

% 1. Use default (multipliers) Gain block implementation

% for one specific Gain block within OneD_DCT8 subsystem

c.forEach('dct8_fixed/OneD_DCT8/Gain14',...

'built-in/Gain', {},...

'hdldefaults.GainMultHDLEmission');

% 2. Use factored CSD Gain block implementation

% for all Gain blocks at or below level of OneD_DCT8 subsystem.

c.forEach('dct8_fixed/OneD_DCT8/*',...

'built-in/Gain', {},...

'hdldefaults.GainFCSDHDLEmission');

The first forEach call defines an implementation mapping for a specific block
within the subsystem OneD_DCT8. The second forEach call defines a different
implementation mapping for all blocks within or below the subsystem
OneD_DCT8.
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The coder resolves such ambiguities by always giving higher priority
to the more specific modelscope. In the example, the Gain14 block
uses the hdldefaults.GainMultHDLEmission implementation, while
all other blocks within or below the subsystem OneD_DCT8 use the
hdldefaults.GainFCSDHDLEmission implementation.

Five levels of modelscope priority from most specific (1) to least specific (5)
are defined:

1 A/B/C/block

2 A/B/C/*

3 A/B/*

4 *

5 Unspecified. Use the default implementation.

forAll
This method is a shorthand form of forEach. Only one modelscope path is
specified. The modelscope argument is specified as a string (not a cell array)
and it is implicitly terminated with'/*'. The syntax is

object.forAll('modelscope', ...
'blocktype', {'block_parms'}, ...
'implementation', {'implementation_parms'})

All other arguments are the same as those described for “forEach” on page 5-8.

set
The set method sets one or more code generation properties. The syntax is

object.set('PropertyName', PropertyValue,...)

The argument list specifies one or more code generation options as
property/value pairs. You can set any of the code generation properties
documented in Chapter 13, “Properties — Alphabetical List”, except the
HDLControlFiles property.
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Note If you specify the same property in both your control file and your
makehdl command, the property will be set to the value specified in the
control file.

Likewise, when generating code via the GUI, if you specify the same property
in both your control file and the HDL Coder options panes, the property will
be set to the value specified in the control file.

generateHDLFor
This method selects the model or subsystem from which code is to be
generated. The syntax is

object.generateHDLFor('simulinkpath')

The argument is a string specifying the full path to the model or subsystem
from which code is to be generated.

To make your control files more portable, you can represent the root-level
model in the path as an abstraction, as in the following example:

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.
c.generateHDLFor('./symmetric_fir');
...

The above generateHDLFor call is valid for any model containing a subsystem
named symmetric_fir at the root level.

Use of this method is optional. You can specify the same parameter in the
Generate HDL for menu in the HDL Coder pane of the Configuration
Parameters dialog box, or in a makehdl command.
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hdlnewcontrolfile
The coder provides the new hdlnewcontrolfile utility to help you construct
code generation control files. Given a selection of one or more blocks from
your model, hdlnewcontrolfile generates a control file containing forEach
statements and comments providing information about all supported
implementations and parameters, for all selected blocks. The generated
control file is automatically opened in the MATLAB editor for further
customization. See the hdlnewcontrolfile function reference page for
details.
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Using Control Files in the Code Generation Process

In this section...

“Creating a Control File and Saving Your HDL Code Generation Settings”
on page 5-16

“Making Your Control Files More Portable” on page 5-20

“Associating an Existing Control File with Your Model” on page 5-20

“Detaching a Control File from Your Model” on page 5-23

“Setting Up HDL Code Generation Defaults With a Control File” on page
5-23

Creating a Control File and Saving Your HDL Code
Generation Settings

Note When you save a Simulink® model, your HDL code generation
settings are not saved with the model like other components of the model’s
configuration set. If you want your HDL code generation settings to persist
across sessions with a model, you must save your current settings to a control
file. The control file is then linked to the model, and the linkage is preserved
when you save the model.

Saving Your HDL Code Generation Settings to a Control File
To save your current HDL code generation settings to a control file:

1 Open the Configuration Parameters dialog box and select the HDL Coder
pane.

2 In the Code generation control file subpane, click Save.

3 If you have changed HDL code generation settings but have not yet applied
them, the following prompt is displayed.
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Click Apply to apply any HDL code generation option settings you may
have changed.

4 A standard file dialog box opens. Navigate to the directory where you want
to save the control file. This directory can be either the current working
directory, or a directory that is in the MATLAB® path. Do not locate
the control file within the MATLAB directory tree, because it could be
overwritten by subsequent MATLAB installations.

5 Enter the desired file name and save the file.

6 The control file name is now displayed in the File name field, as shown in
the following figure.
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When a control file is saved or loaded using the GUI, linkage between the
model and the control file is established by an absolute path. If you want
to load a control file using a relative path, use the makehdl or makehdltb
functions, as described in “Associating an Existing Control File with Your
Model” on page 5-20.

7 The control file is now linked to your model and is used when code is
generated. Save the model if you want the control file linkage to persist
in future sessions with your model.

The control file you saved contains a generateHDLFor statement (see
“generateHDLFor” on page 5-14) that specifies the path to the DUT
specified in the Generate HDL for field. In this path, the root-level
model is represented by the period (see “Representation of the Root Model
in modelscopes” on page 5-11, rather than by an explicit model name
reference. This makes the control file more portable.
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If you later select a different DUT for code generation, or make structural
changes to your model (such as renaming the DUT), be sure to update this
path information by resaving the control file.

The control file also preserves the values of all HDL code generation
properties in the form of a call to the set method (see “set” on page 5-13).
Properties are passed in to the call in alphabetical order.

8 If desired, you can now customize the control file using the MATLAB Editor
or some other text editor. For example, you may want to add ForEach
statements to define block implementation bindings. After you edit and
save your changes to the control file, be sure to reload it by clicking Load.

Saving Your HDL Code Generation Settings When Closing Your
Model
When you close your model, the coder displays the following message if you
have made changes to the HDL code generation settings but have not yet
saved them to a control file.

If you click Yes, a standard file dialog box opens. You can then navigate to the
desired directory and save the control file.

Creating a Control File Manually
You can create a control file manually using the MATLAB Editor or some
other text editor. See “Structure of a Control File” on page 5-6 to make sure
your files are set up correctly.

One reason for creating a control file manually is to create a control file that
sets defaults for a subset of HDL code generation properties. See “Setting
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Up HDL Code Generation Defaults With a Control File” on page 5-23 for
an example.

If you create a control file manually, you must link it to your model, as
described in “Associating an Existing Control File with Your Model” on page
5-20

Making Your Control Files More Portable
It can be advantageous to code your control files so that they are independent
of any particular model name. To do this, use the period (.) to represent the
root-level model at the beginning of all modelscope paths. For example:

cfg.forEach( './Subsystem/MinMax', ...
'built-in/MinMax', {}, ...
'hdldefaults.MinMaxCascadeHDLEmission');

If you code modelscopes in this way, all modelscopes are interpreted as
references to the current model, rather than as references to an explicitly
named model. Therefore, you can save your model under a different name,
and all references to the root-level model will be valid.

Associating an Existing Control File with Your Model
A control file must be associated with your model before you can use the
control file in code generation.

If you are generating code using the makehdl or makehdltb commands, use
the HDLControlFiles property to specify the location of the control file.
HDLControlFiles lets you specify either a full or relative path to the control
file. In the following example, the control file is assumed to be located on the
MATLAB path or in the current working directory, and to have the default
file-name extension .m.

makehdl('HDLControlFiles', {'dct8config'});

If you are using the GUI to generate code, specify the location of the control
file as follows:
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1 Open the Configuration Parameters dialog box and select the HDL Coder
pane.

2 Check the File name field to see if a control file is already linked to the
model. If the File name field is blank, the model has no linked control
file; proceed to step 3.

If the File name field is populated, the model is linked to a control file. If
you want to replace that linkage and load in a different control file, proceed
to step 3. Otherwise, no action is required.

3 In the Code generation control file subpane, click Load.

4 A standard file dialog box opens. Navigate to the desired control file and
select it.

5 The control file name appears in the File name field, as shown in the
following figure.

6 Click Apply.
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7 The control file is now linked to your model and is used when code is
generated. Save the model if you want the control file linkage to persist
in future sessions with your model.
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Detaching a Control File from Your Model
The quickest (and recommended) way to detach a control file from your model
is to click Restore Factory Defaults. This button removes the control file
linkage, clears the File name field, and resets all HDL code generation
properties to their default settings.

Note Restore Factory Defaults resets all HDL code generation settings.
This action cannot be cancelled or undone. To recover previous settings, you
must close the model without saving it, and then reopen it.

Any of the following actions also detach a control file from a model:

• Attach another control file, using either the Load button or a call to
makehdl

• Close the model after attaching a control file, without saving the model

• Clear the HDLControlFiles property by passing a null file name argument
to makehdl, as in this example:

makehdl(gcb,'HDLControlFiles',{''});

Setting Up HDL Code Generation Defaults With a
Control File
The Model Configuration Preferences dialog of the Model Explorer does not
currently include HDL code generation settings. However, you can use a
control file to define HDL code generation settings that you can subsequently
load into any model. You can use such a control file to set up default or
template HDL code generation settings for your projects or organization.

For example, suppose that you want the following settings to be applied to
all models for a certain HDL project:

• Code is generated in Verilog.

• Generated code is written to a subdirectory of the user’s working directory,
named vlog_gen_code.

• Use of Verilog `timescale directives is disabled.
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The following code example lists a control file that enforces these
requirements:

function c = my_sfir_fixed_control

c = hdlnewcontrol(mfilename);
c.set( ...
'TargetDirectory', 'vlog_gen_code',...
'TargetLanguage', 'verilog',...
'UseVerilogTimescale', 'off'...
);

An important feature of this control file is that it does not contain any code
referencing elements that are specific to any particular model (such as paths
in generateHDLFor or forEach calls). Therefore, the control file is portable
and can be loaded into any model.

Loading a control file for the purpose of setting up defaults into a model is
no different than loading any other control file (see “Associating an Existing
Control File with Your Model” on page 5-20). However, if you load the same
control file into multiple models, take care not to overwrite the original
control file.
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Specifying Block Implementations and Parameters in the
Control File

In this section...

“Overview” on page 5-25

“Generating Selection/Action Statements with the hdlnewforeach Function”
on page 5-26

“Blocks with Multiple Implementations” on page 5-30

Overview
The coder provides a default HDL block implementation for all supported
blocks. In addition, the coder provides selectable alternate HDL block
implementations for several block types. Using selection/action statements
(forEach or forAll method calls) in a control file, you can specify the block
implementation to be applied to all blocks of a given type (within a specific
modelscope) during code generation. (See “Code Generation Control Objects
and Methods” on page 5-8.) For many implementations, you can also pass
in implementation parameters that provide additional control over code
generation details.

You select HDL block implementations by specifying an implementation
package and class, in the form package.class. Pass in the package.class
specification and implementation parameters (if any) to the implementation
argument of a forEach or forAll call, as in the following example.

config.forEach('*',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {'OutputPipeline', 2});

Given the package.class specification,the coder will call the appropriate
code generation method. You do not need to know any internal details of
the implementation classes.
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Generating Selection/Action Statements with the
hdlnewforeach Function
Determining the block path, type, implementation package.class
specification, and implementation parameters for a large number of blocks in
a model can be time-consuming. Use the hdlnewforeach function to create
selection/action statements in your control files. Given a selection of one or
more blocks from your model, hdlnewforeach returns the following for each
selected block, as string data in the MATLAB® workspace:

• A forEach call coded with the correct modelscope , blocktype, and default
implementation arguments for the block

• (Optional) A cell array of strings enumerating the available
implementations for the block, in package.class form

• (Optional) A cell array of strings enumerating the names of implementation
parameters (if any) corresponding to the block implementations.
hdlnewforeach does not list data types and other details of block
implementation parameters. These details are described in “Block
Implementation Parameters” on page 5-60.

Having generated this information, you can copy and paste the strings into
your control file.

hdlnewforeach Example
This example uses hdlnewforeach to construct a forEach call that specifies
generation of two output pipeline stages after the output of a selected Sum
block within the sfir_fixed demo model. To create the control file:

1 In the MATLAB window, select File > New > M-File. The MATLAB editor
opens an empty M-file.

2 Create a skeletal control file by entering the following code into the M-file
window:

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.
c.generateHDLFor('sfir_fixed/symmetric_fir');
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% INSERT FOREACH CALL BELOW THIS LINE.

3 Save the file as newforeachexamp.m.

4 Open the sfir_fixed demo model.

5 Before invoking hdlnewforeach, you must run checkhdl or makehdl to
build in-memory information about the model. At the MATLAB command
prompt, run checkhdl on the symmetric_fir subsystem, as shown in the
following code example:

checkhdl('sfir_fixed/symmetric_fir')
### Starting HDL Check.
### HDL Check Complete with 0 errors, warnings and messages.

6 Close the checkhdl report window and activate the sfir_fixed model
window.

7 In the symmetric_fir subsystem window, select the Add4 block, as shown
in the following figure.

Now you are ready to generate a forEach call for the selected block:
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1 Type the following command at the MATLAB prompt.

[cmd,impl,parms] = hdlnewforeach(gcb)

2 The command returns the following results:

cmd =

c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {});

impl =

{3x1 cell}

parms =

{1x1 cell} {1x1 cell} {1x1 cell}

The first return value, cmd, contains the generated forEach call. The
forEach call specifies the default implementation for the Sum block:
hdldefaults.SumLinearHDLEmission. Also by default, no parameters are
passed in for this implementation.

3 The second return value, impl, is a cell array containing three strings
representing the available implementations for the Sum block. The
following example lists the contents of the impl array:

impl{1}

ans =

'hdldefaults.SumTreeHDLEmission'
'hdldefaults.SumLinearHDLEmission'
'hdldefaults.SumCascadeHDLEmission'

See the table “Built-In/Sum of Elements on page 5-33” for information
about these implementations.
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4 The third return value, parms, is a cell array containing three strings
that represent the available implementations parameters corresponding to
the previously listed Sum block implementations. The following example
lists the contents of the parms array:

parms{1:3}

ans =

'OutputPipeline'

ans =

'OutputPipeline'

ans =

'OutputPipeline'

This listing shows that each of the Sum block implementations has one
parameter, 'OutputPipeline'. This indicates that a parameter/value pair
of the form {'OutputPipeline',val} can be passed in with any of the
Sum block implementations.

hdlnewforeach does not provide information about the data type, valid
range, or other constraints on val. Some implementation parameters take
numeric values, while others take strings. See “Block Implementation
Parameters” on page 5-60 for details on implementation parameters.

5 Copy the three lines of forEach code from the MATLAB Command Window
and paste them into the end of your newforeachexamp.m file:

% INSERT FOREACH CALL BELOW THIS LINE.
c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {});

6 In this example, you will specify the default Sum block implementation for
the Add4 block, but with generation of two output pipeline stages before the

5-29



5 Code Generation Control Files

final output. To do this, pass in the 'OutputPipeline' parameter with a
value of 2. Modify the final line of the forEach call in your control file:

% INSERT FOREACH CALL BELOW THIS LINE.
c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {'OutputPipeline', 2});

7 Save the control file.

8 The following code shows the complete control file:

function c = newforeachexamp
c = hdlnewcontrol(mfilename);

% Set top-level subsystem from which code is generated.
c.generateHDLFor('sfir_fixed/symmetric_fir');
% INSERT FOREACH CALLS HERE.
c.forEach('sfir_fixed/symmetric_fir/Add4',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {'OutputPipeline', 2});

The demo “Getting Started with Output Pipeline Commands in Control Files”
gives a more detailed example of pipelining, including analysis of resulting
clock rate improvements in a synthesized HDL model.

Note For convenience, hdlnewforeach supports a more abbreviated syntax
than that used in the previous example. See the hdlnewforeach reference
page.

Blocks with Multiple Implementations
The tables in this section summarize the block types that have multiple
implementations. The Implementations column gives the package.class
specification you should use in your control files. The Description column
summarizes the trade-offs involved in choosing different implementations.
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The coder provides a default HDL block implementation for all supported
blocks. If you want to use the default implementation, you do not usually
need to specify it explicitly in a control file. However, the following example
illustrates a situation in which the default implementation is specified as an
exception for one particular block:

% 1. Use default (multipliers) Gain block implementation
% for one specific Gain block within OneD_DCT8 subsystem.
c.forEach('dct8_fixed/OneD_DCT8/Gain14',...

'built-in/Gain', {},...
'hdldefaults.GainMultHDLEmission');

% 2. Use factored CSD Gain block implementation
% or all other Gain blocks at or below
% level of OneD_DCT8 subsystem.
c.forEach('dct8_fixed/OneD_DCT8/*',...

'built-in/Gain', {},...
'hdldefaults.GainFCSDHDLEmission');

Built-In/Gain

Implementations Description

hdldefaults.GainMultHDLEmission Default. This implementation retains multiplier
operations in HDL code generated by the Gain
block.

hdldefaults.GainCSDHDLEmission This implementation decreases the area used
by the model while maintaining or increasing
clock speed, using canonic signed digit (CSD)
techniques. CSD replaces multiplier operations
with shift and add operations. CSD minimizes
the number of addition operations required for
constant multiplication by representing binary
numbers with a minimum count of nonzero digits.

hdldefaults.GainFCSDHDLEmission This implementation lets you achieve a greater
area reduction than CSD, at the cost of decreasing
clock speed. This implementation uses factored
CSD techniques, which replace multiplier
operations with shift and add operations on prime
factors of the operands.
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Built-In/Lookup Table

Implementations Description

hdldefaults.LookupHDLEmission Default. Nonhierarchical lookup table.

hdldefaults.LookupHDLInstantiation This implementation generates an additional
level of HDL hierarchy (which does not exist in
the Simulink® model) for the lookup table.

(See also “Lookup Table Requirements and Restrictions” on page 5-56.)

Signal Processing Blockset/Minimum

Implementation Description

hdldefaults.MinMaxTreeHDLEmission Default. This implementation is large and slow
but has minimal latency.

hdldefaults.MinMaxCascadeHDLEmission This implementation is optimized for latency *
area, with medium speed. See “A Note on Cascade
Implementations” on page 5-40.

Signal Processing Blockset/Maximum

Implementation Description

hdldefaults.MinMaxTreeHDLEmission Default. This implementation is large and slow
but has minimal latency.

hdldefaults.MinMaxCascadeHDLEmission This implementation is optimized for latency *
area, with medium speed. See “A Note on Cascade
Implementations” on page 5-40.
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Built-In/MinMax

Implementation Description

hdldefaults.MinMaxTreeHDLEmission Default. This implementation is large and slow
but has minimal latency.

hdldefaults.MinMaxCascadeHDLEmission This implementation is optimized for latency *
area, with medium speed. See “A Note on Cascade
Implementations” on page 5-40.

Built-In/Product of Elements

Implementation Description

hdldefaults.ProductLinearHDLEmission Default. Generates a chain of N operations
(multipliers) for N inputs.

hdldefaults.ProductTreeHDLEmission This implementation has minimal latency but
is large and slow. It generates a tree-shaped
structure of multipliers.

hdldefaults.ProductCascadeHDLEmission This implementation optimizes latency * area
and is faster than the tree implementation.
It computes partial products and cascades
multipliers. See “A Note on Cascade
Implementations” on page 5-40.

Built-In/Sum of Elements

Implementation Description

hdldefaults.SumLinearHDLEmission Default. Generates a chain of N operations
(adders ) for N inputs.
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Built-In/Sum of Elements (Continued)

Implementation Description

hdldefaults.SumTreeHDLEmission This implementation has minimal latency but is
large and slow. Generates a tree-shaped structure
of adders.

hdldefaults.SumCascadeHDLEmission This implementation optimizes latency * area
and is faster than the tree implementation. It
computes partial sums and cascades adders. See
“A Note on Cascade Implementations” on page
5-40.

Built-In/SubSystem

Implementation Description

hdldefaults.SubsystemBlackBoxHDLInstantiation This implementation generates a
black box interface for subsystems.
That is, the generated HDL code
includes only the input/output port
definitions for the subsystem. In
this way, you can use a subsystem in
your model to generate an interface
to existing hand-written HDL code.

The black box interface generated
for subsystems is similar to the
interface generated for Model blocks,
but without generation of clock
signals.

hdldefaults.NoHDLEmission This implementation completely
removes the subsystem from the
generated code. This lets you use a
subsystem in simulation but treat it
as a “no-op” in the HDL code.

For more information on subsystem implementations, see Chapter 8,
“Interfacing Subsystems and Models to HDL Code”.
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Special-Purpose Implementations

Implementation Description

hdldefaults.PassThroughHDLEmission Provides a pass-through implementation in
which the block’s inputs are passed directly to its
outputs. (In effect, the block becomes a wire in the
HDL code.) Several blocks are supported with a
pass-through implementation.

hdldefaults.NoHDLEmission This implementation completely removes the
block from the generated code. This lets you use
the block in simulation but treat it as a “no-op”
in the HDL code. This implementation is used
for many blocks (such as Scopes and Assertions)
that are significant in simulation but would be
meaningless in HDL code. You can also use this
implementation as an alternative implementation
for subsystems.

For more information related to special-purpose implementations, see Chapter
8, “Interfacing Subsystems and Models to HDL Code”

Math Function Block Implementations
The Math Function block sqrt ,reciprocal and conj functions are supported
for HDL code generation.

By specifying an implementation and parameter(s) in your control file, you
can choose from among several algorithms for computing these functions.
The following tables summarize the available Math Function block
implementations and parameters.

5-35



5 Code Generation Control Files

simulink/Math Operations/Math Function (sqrt )

Implementations Parameters Description

{'UseMultiplier',
'on'}

(Default parameter): Compute
sqrt using multiply/add algorithm
(Simulink default algorithm).

{'UseMultiplier',
'off'}

Compute sqrt using bitset
shift/addition algorithm.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.SqrtBitsetHDLEmission
(Default implementation)

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61

{'Iterations', N} Compute sqrt using iterative
Newton method. The argument N
specifies the number of iterations.

The default value for N is 5.

The recommended value for N is
between 3 and 10. The coder will
generate a message if N is outside
the recommended range.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.SqrtNewtonHDLEmission

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61

Notes on the sqrt implementations:

• Input must be an unsigned scalar.

• The output is a fixed-point scalar.

• The Math Function block from the hdllib library has sqrt selected in
its Function menu.
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simulink/Math Operations/Math Function (reciprocal )

Implementations Parameters Description

Unspecified (Default) Compute reciprocal as 1/N, using
the HDL divide (/) operator to
implement the division.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.RecipDivHDLEmission

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61

{'Iterations', N} Compute reciprocal using iterative
Newton method. The argument N
specifies the number of iterations.

The default value for N is 4.

The recommended value for N is
between 2 and 10. The coder will
generate a message if N is outside
the recommended range.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.RecipNewtonHDLEmission

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61

Notes on the reciprocal implementations:

• Input must be scalar and must have integer or fixed-point (signed or
unsigned) data type.

• The output must be scalar and have integer or fixed-point (signed or
unsigned) data type.

• Only the Zero rounding mode is supported.

• The Saturate on integer overflow option on the block must be selected.
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simulink/Math Operations/Math Function (conj )

Implementations Parameters Description

Unspecified (Default) Compute complex
conjugate. See Math
Function in the
Simulinkdocumentation.

{'InputPipeline',
NStages}

See “InputPipeline” on
page 5-60

hdldefaults
.ComplexConjugateHDLEmission

{'OutputPipeline',
NStages}

See “OutputPipeline” on
page 5-61

simulink/Math Operations/Math Function (parent class)

Implementations Parameters Description

Unspecified (Default) Use the default implementation for
the function (sqrt ,reciprocal or
conj) selected on the block.

{'UseMultiplier',
'on'} (use with sqrt only)

If the function selected on the
block is sqrt, compute sqrt using
multiply/add algorithm (Simulink
default algorithm). If the function
selected on the block is not sqrt, an
error results.

{'UseMultiplier',
'off'} (use with sqrt
only)

If the function selected on the block
is sqrt, compute sqrt using bitset
shift/addition algorithm. If the
function selected on the block is not
sqrt, an error results.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.MathFunctionHDLEmission

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61
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Divide Block Implementations
The Divide block normally supports the
hdldefaults.ProductLinearHDLEmission implementations.

However, the reciprocal operation of the Divide block is a special case.
When the reciprocal operation is selected, the Divide block supports the
implementations described in the table below.

simulink/Math Operations/Divide (reciprocal computation only)

Implementations Parameters Description

Unspecified (Default) When computing a reciprocal,
compute 1/N using the HDL divide
(/) operator to implement the
division.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.ProductLinearHDLEmission'

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61

{'Iterations', N} When computing a reciprocal, use
iterative Newton method. The
argument N specifies the number of
iterations.

The default value for N is 4.

The recommended value for N is
between 2 and 10. The coder will
generate a message if N is outside
the recommended range.

{'InputPipeline',
NStages}

See “InputPipeline” on page 5-60

hdldefaults
.RecipNewtonHDLEmission

{'OutputPipeline',
NStages}

See “OutputPipeline” on page 5-61

Notes on the reciprocal implementations:
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• Input must be scalar and must have integer or fixed-point (signed or
unsigned) data type.

• The output must be scalar and have integer or fixed-point (signed or
unsigned) data type.

• Only the Zero rounding mode is supported.

• The Saturate on integer overflow option on the block must be selected.

A Note on Cascade Implementations
Cascade implementations are available for the Sum of Elements, Product of
Elements, and MinMax blocks. These implementations require multiple clock
cycles to process their inputs; therefore, their inputs must be kept unchanged
for their entire sample-time period. Generated test benches accomplish this
by using a register to drive the inputs.

A recommended design practice, when integrating generated HDL code with
other HDL code, is to provide registers at the inputs. While not strictly
required, adding registers to the inputs improves timing and avoids problems
with data stability for blocks that require multiple clock cycles to process
their inputs.

5-40



Summary of Block Implementations

Summary of Block Implementations
The following table summarizes all blocks that are supported for HDL code
generation and their available implementations in the current release. The
columns signify

• Simulink® Block: Library path and block name.

• Blockscope: Block path and name to be passed as a blockscope string
argument to forEach or forAll.

• Implementations and Parameters: Names of available implementations,
and parameters supported for the implementation (if any).

When specifying an implementation argument to
forEach or forAll, use the format package.class,
for example, hdldefaults.AssignmentHDLEmission or
hdlstateflow.StateflowHDLInstantiation. Almost all implementation
classes currently belong to the package hdldefaults. In the following
table, the package name is given explicitly only for classes that belong to
some other package.

See “Block Implementation Parameters” on page 5-60 for information on
implementation parameters and how to specify them.

Some blocks have specific requirements and restrictions on how they are
configured for HDL code generation. The table provides links to relevant
documentation for blocks that have such requirements.

Note Support for complex signals is limited to a subset of the blocks listed in
this section. See “Blocks That Support Complex Data” on page 5-64.
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Simulink Block Blockscope Implementations and
Parameters

commseqgen2/PN Sequence
Generator

(See “PN Sequence Generator
Block Requirements and
Restrictions” on page 5-58)

commseqgen2/PN
Sequence Generator

PNgenHDLEmission

Parameters: OutputPipeline,
InputPipeline

dsparch4/Digital Filter

(See “Digital Filter
Block Requirements and
Restrictions” on page 5-56)

dsparch4/Digital Filter DigitalFilterHDLInstantiation

Parameters: OutputPipeline,
InputPipeline

dspindex/Multiport Selector dspindex/Multiport
Selector

MultiportSelectorHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspindex/Variable Selector dspindex/Variable
Selector

VariableSelectorHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspmlti4/CIC Decimation

(See “Multirate CIC
Decimator and Multirate
FIR Decimator Blocks
Requirements and
Restrictions” on page 5-57)

dspmlti4/CIC Decimation CICDecimationHDLInstantiation

Parameters: OutputPipeline,
InputPipeline

dspmlti4/FIR Decimation

(See “Multirate CIC
Decimator and Multirate
FIR Decimator Blocks
Requirements and
Restrictions” on page 5-57)

dspmlti4/FIR Decimation FIRDecimationHDLInstantiation

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and
Parameters

dspsigattribs/Convert 1-D to
2-D

dspsigattribs/Convert 1-D
to 2-D

PassThroughHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsigattribs/Frame
Conversion

built-in/FrameConversion FrameConversionHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsigops/Delay dspsigops/Delay DSPDelayHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsigops/Downsample dspsigops/Downsample DownsampleHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsigops/Upsample dspsigops/Upsample UpsampleHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsigops/NCO

(See “NCO Block
Requirements and
Restrictions” on page 5-58)

dspsigops/NCO NCOHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsnks4/Matrix Viewer dspsnks4/Matrix Viewer NoHDLEmission

dspsnks4/Signal To
Workspace

dspsnks4/Signal To
Workspace

NoHDLEmission

dspsnks4/Spectrum Scope dspsnks4/Spectrum Scope NoHDLEmission

dspsnks4/Time Scope built-in/Scope NoHDLEmission

dspsnks4/Vector Scope dspsnks4/Vector Scope NoHDLEmission

dspsnks4/Waterfall dspsnks4/Waterfall NoHDLEmission
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Simulink Block Blockscope Implementations and
Parameters

dspsrcs4/DSP Constant dspsrcs4/DSP Constant ConstantHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspsrcs4/Sine Wave

(See “Sine Wave Block
Requirements and
Restrictions” on page 5-59)

dspsrcs4/Sine Wave SineWaveHDLEmission

Parameters: OutputPipeline,
InputPipeline

dspstat3/Maximum dspstat3/Maximum MinMaxTreeHDLEmission

MinMaxCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

dspstat3/Minimum dspstat3/Minimum MinMaxTreeHDLEmission

MinMaxCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

hdldemolib/Dual Port RAM

(See“Generating an Interface
for RAM Blocks” on page 8-9 )

hdldemolib/Dual Port
RAM

RamBlockDualHDLInstantiation

Parameters: OutputPipeline,
InputPipeline,
AddClockEnablePort

hdldemolib/Simple Dual Port
RAM

(See “Generating an Interface
for RAM Blocks” on page 8-9 )

hdldemolib/Simple Dual
Port RAM

RamBlockSimpDualHDLInstantiation

Parameters: OutputPipeline,
InputPipeline

hdldemolib/Single Port RAM

(See“Generating an Interface
for RAM Blocks” on page 8-9 )

hdldemolib/Single Port
RAM

RamBlockSingleHDLInstantiation

Parameters: OutputPipeline,
InputPipeline,AddClockEnablePort
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Simulink Block Blockscope Implementations and
Parameters

lfilinklib/HDL Cosimulation lfilinklib/HDL
Cosimulation

hdlincisive.IncisiveHDLInstantiation

Parameters: See “Interface
Generation Parameters” on page
5-63.

modelsimlib/HDL
Cosimulation

modelsimlib/HDL
Cosimulation

ModelSimHDLInstantiation

Parameters: See “Interface
Generation Parameters” on page
5-63.

modelsimlib/To VCD File modelsimlib/To VCD File NoHDLEmission

sflib/Chart

(See Chapter 9, “Stateflow®

HDL Code Generation
Support”

sflib/Chart hdlstateflow
.StateflowHDLInstantiation

Parameters: OutputPipeline,
InputPipeline

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay Enabled

simulink/Additional Math
& Discrete/Additional
Discrete/Unit Delay
Enabled

UnitDelayEnabledHDLEmission

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Commonly Used
Blocks/Constant

built-in/Constant ConstantHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Data Type Conversion

built-in/

DataTypeConversion

DataTypeConversionHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Demux

built-in/Demux DemuxHDLEmission

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and
Parameters

simulink/Commonly Used
Blocks/Gain

built-in/Gain GainMultHDLEmission

GainFCSDHDLEmission

GainCSDHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

simulink/Commonly Used
Blocks/Ground

built-in/Ground ConstantHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/In1

built-in/Inport NoHDLEmission

(Input ports are generated
automatically.)

simulink/Commonly Used
Blocks/Logical Operator

built-in/Logic LogicHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Mux

built-in/Mux MuxHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Out1

built-in/Outport NoHDLEmission

(Output ports are generated
automatically.)
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Simulink Block Blockscope Implementations and
Parameters

simulink/Commonly Used
Blocks/Product

built-in/Product ProductLinearHDLEmission

ProductTreeHDLEmission

ProductCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

Note: ProductTreeHDLEmission
and ProductCascadeHDLEmission
are supported for Product blocks
having a single vector input that
has two or more elements.

simulink/Commonly Used
Blocks/Relational Operator

built-in/

RelationalOperator

RelationalOperatorHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Commonly Used
Blocks/Scope

built-in/Scope NoHDLEmission

simulink/Commonly Used
Blocks/Sum

built-in/Sum SumLinearHDLEmission

SumTreeHDLEmission

SumCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

Note: SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Sum blocks having a
single vector input that has two or
more elements.

simulink/Commonly Used
Blocks/Switch

built-in/Switch SwitchHDLEmission

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and
Parameters

simulink/Commonly Used
Blocks/Terminator

built-in/Terminator NoHDLEmission

simulink/Commonly Used
Blocks/Unit Delay

built-in/UnitDelay UnitDelayHDLEmission

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Discrete

/Discrete-Time Integrator

(See “Discrete-Time
Integrator Requirements
and Restrictions” on page
5-56)

built-in/DiscreteIntegrator DiscreteTimeIntegratorRTW

Parameters: OutputPipeline,
InputPipeline

simulink/Discontinuities

/Saturation

built-in//Saturation SaturationHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Discrete/Integer
Delay

simulink/Discrete/Integer
Delay

IntegerDelayHDLEmission

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Discrete/Memory built-in/Memory MemoryHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Discrete/Tapped
Delay

simulink/Discrete/Tapped
Delay

TappedDelayHDLEmission

Parameters: OutputPipeline,
InputPipeline, ResetType

simulink/Discrete/

Zero-Order Hold

built-in/ZeroOrderHold ZeroOrderHoldHDLEmission

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and
Parameters

simulink/Logic and Bit
Operations/Bit Clear

simulink/Logic and Bit
Operations/Bit Clear

BitOpsHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Bit Set

simulink/Logic and Bit
Operations/Bit Set

BitOpsHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Bitwise Operator

simulink/Logic and
Bit Operations/Bitwise
Operator

BitOpsHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Compare To
Constant

simulink/Logic and Bit
Operations/Compare To
Constant

CompareToConstHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Compare To Zero

simulink/Logic and Bit
Operations/Compare To
Zero

CompareToZeroHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Logic and Bit
Operations/Shift Arithmetic

simulink/Logic and
Bit Operations/Shift
Arithmetic

BitOpsHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Lookup
Tables/Lookup Table

(See also “Lookup Table
Requirements and
Restrictions” on page 5-56)

built-in/Lookup LookupHDLInstantiation

LookupHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

simulink/Math
Operations/Abs

built-in/Abs AbsHDLEmission

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and
Parameters

simulink/Math
Operations/Add

built-in/Sum SumTreeHDLEmission

SumLinearHDLEmission

SumCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

Note: SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Add blocks having a
single vector input that has two or
more elements.

simulink/Math
Operations/Assignment

built-in/Assignment AssignmentHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Complex to
Real-Imag

built-in

/ComplexToRealImag

ComplexToRealImagHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Divide

( See “Divide Block
Implementations” on page
5-39 for information on
computation of reciprocal)

built-in/Product ProductLinearHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

simulink/Math
Operations/Divide/reciprocal

The reciprocal operation is
a special case, supporting
two implementations, as
described in “Divide Block
Implementations” on page
5-39 .

built-in/Product ProductLinearHDLEmission

RecipNewtonHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.
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Simulink Block Blockscope Implementations and
Parameters

simulink/Math
Operations/Math Function
(sqrt ,reciprocal, conj)

built-in/Math See “Math Function Block
Implementations” on page 5-35

simulink/Math
Operations/Matrix
Concatenate

built-in/Concatenate MuxHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/MinMax

built-in/MinMax MinMaxTreeHDLEmission

MinMaxCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

simulink/Math
Operations/Product of
Elements

built-in/Product ProductTreeHDLEmission

ProductLinearHDLEmission

ProductCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

simulink/Math
Operations/Real-Imag to
Complex

built-in

/RealImagtoComplex

RealImagtoComplexHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Reshape

simulink/Math
Operations/Reshape

PassThroughHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Sign

built-in/Signum SignumHDLEmission

Parameters: OutputPipeline,
InputPipeline
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Simulink Block Blockscope Implementations and
Parameters

simulink/Math
Operations/Subtract

built-in/Sum SumTreeHDLEmission

SumLinearHDLEmission

SumCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

Note: SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Subtract blocks
having a single vector input that
has two or more elements.

simulink/Math
Operations/Sum of Elements

built-in/Sum SumTreeHDLEmission

SumLinearHDLEmission

SumCascadeHDLEmission

Parameters: All implementations
support OutputPipeline,
InputPipeline.

Note: SumTreeHDLEmission and
SumCascadeHDLEmission are
supported for Sum of Elements
blocks having a single vector input
that has two or more elements.

simulink/Math
Operations/Unary Minus

simulink/Math
Operations/Unary Minus

UnaryMinusHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Math
Operations/Vector
Concatenate

built-in/Concatenate MuxHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Model
Verification/Assertion

built-in/Assertion NoHDLEmission
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Simulink Block Blockscope Implementations and
Parameters

simulink/Model
Verification/Check Discrete
Gradient

simulink/Model
Verification/Check
Discrete Gradient

NoHDLEmission

simulink/Model
Verification/Check Dynamic
Gap

simulink/Model
Verification/Check
Dynamic Gap

NoHDLEmission

simulink/Model
Verification/Check Dynamic
Lower Bound

simulink/Model
Verification/Check
Dynamic Lower Bound

NoHDLEmission

simulink/Model
Verification/Check Dynamic
Range

simulink/Model
Verification/Check
Dynamic Range

NoHDLEmission

simulink/Model
Verification/Check Dynamic
Upper Bound

simulink/Model
Verification/Check
Dynamic Upper Bound

NoHDLEmission

simulink/Model
Verification/Check Input
Resolution

simulink/Model
Verification/Check Input
Resolution

NoHDLEmission

simulink/Model
Verification/Check Static
Gap

simulink/Model
Verification/Check Static
Gap

NoHDLEmission

simulink/Model
Verification/Check Static
Lower Bound

simulink/Model
Verification/Check Static
Lower Bound

NoHDLEmission

simulink/Model
Verification/Check Static
Range

simulink/Model
Verification/Check Static
Range

NoHDLEmission

simulink/Model
Verification/Check Static
Upper Bound

simulink/Model
Verification/Check Static
Upper Bound

NoHDLEmission

5-53



5 Code Generation Control Files

Simulink Block Blockscope Implementations and
Parameters

simulink/Ports &
Subsystems/Model

built-in/ModelReference ModelReferenceHDLInstantiation

Parameters: See “Interface
Generation Parameters” on page
5-63.

simulink/Signal
Attributes/Data Type
Duplicate

simulink/Signal
Attributes/Data Type
Duplicate

NoHDLEmission

simulink/Signal
Attributes/Data Type
Propagation

simulink/Signal
Attributes/Data Type
Propagation

NoHDLEmission

simulink/Signal
Attributes/Rate Transition

built-in/RateTransition RateTransitionHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Attributes/Signal Conversion

built-in/SignalConversion PassThroughHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Attributes/Signal
Specification

built-in/

SignalSpecification

SignalSpecificationHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Routing/Index Vector

built-in/MultiPortSwitch MultiPortSwitchHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Routing/Multiport Switch

built-in/MultiPortSwitch MultiPortSwitchHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Signal
Routing/Selector

built-in/Selector SelectorHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Sinks/Display built-in/Display NoHDLEmission
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Simulink Block Blockscope Implementations and
Parameters

simulink/Sinks/Floating
Scope

built-in/Scope NoHDLEmission

simulink/Sinks/Stop
Simulation

built-in/Stop NoHDLEmission

simulink/Sinks/To File built-in/ToFile NoHDLEmission

simulink/Sinks/To Workspace built-in/ToWorkspace NoHDLEmission

simulink/Sinks/XY Graph simulink/Sinks/XY Graph NoHDLEmission

simulink/Sources/Counter
Free-Running

simulink/Sources/Counter
Free-Running

CounterFreeRunningHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/Sources/Counter
Limited

simulink/Sources/Counter
Limited

CounterLimitedHDLEmission

Parameters: OutputPipeline,
InputPipeline

simulink/User-Defined
Functions/Embedded
MATLAB Function

(See Chapter 10, “Generating
HDL Code with the
Embedded MATLAB™
Function Block”)

simulink/User-Defined
Functions/Embedded
MATLAB Function

hdlstateflow
.StateflowHDLInstantiation

Parameters: OutputPipeline,
InputPipeline
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5 Code Generation Control Files

Block-Specific Requirements and Restrictions for HDL Code
Generation

In this section...

“Requirements and Restrictions on Use of Blocks” on page 5-56

“Restrictions on Use of Blocks in the Test Bench” on page 5-59

Requirements and Restrictions on Use of Blocks
This section discusses requirements and restrictions that apply to the use of
specific block types in HDL code generation.

Digital Filter Block Requirements and Restrictions

• When the Digital Filter block Discrete-time filter object option is
selected, Filter Design Toolbox™ software is required to generate code
for the block.

• The Digital Filter block Input port(s) option is not supported for HDL
code generation.

Discrete-Time Integrator Requirements and Restrictions

• Use of state ports is not supported for HDL code generation. Clear the
Show state port option.

• Use of external resets is not supported for HDL code generation. Set
External reset to none.

• Use of external initial conditions is not supported for HDL code generation.
Set Initial condition source to Internal.

• Width of input and output signals must not exceed 32 bits.

Lookup Table Requirements and Restrictions
The coder does not support the Lookup method options (such as
Interpolation-Extrapolation) displayed on the Lookup Table block GUI.
Generated HDL code assumes the existence of a full table.
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Multirate CIC Decimator and Multirate FIR Decimator Blocks
Requirements and Restrictions
The following requirements apply to both the Multirate CIC Decimator and
Multirate FIR Decimator blocks:

• The coder supports both Coefficient source options (Dialog parameters
or Multirate filter object (MFILT)) .

• When Multirate filter object (MFILT) is selected:

- Filter Design HDL Coder™ software is required to generate code for
the block.

- You can enter either a filter object name or a direct filter specification in
the Multirate filter variable field.

• Vector and frame inputs are not supported for HDL code generation.

For the Multirate FIR Decimator block:

• When Multirate filter object (MFILT) is selected, the filter object
specified in the Multirate filter variable field must be either a
mfilt.firdecim object or a mfilt.firtdecim object. If you specify some
other type of filter object, an error will occur.

• When Dialog parameters is selected, the following fixed-point options
are not supported for HDL coder generation:

- Slope and Bias scaling

- Inherit via internal rule

For the Multirate CIC Decimator block:

• When Multirate filter object (MFILT) is selected, the filter object
specified in the Multirate filter variable field must be a mfilt.cicdecim
object. If you specify some other type of filter object, an error will occur.

• When Dialog parameters is selected, the Filter Structure option
Zero-latency decimator is not supported for HDL code generation. Select
Decimator in the Filter Structure pulldown menu.
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NCO Block Requirements and Restrictions
Inputs:

• The phase increment and phase offset support only integer or fixed-point
data types.

• The phase increment and phase offset can be either scalars or vectors.

Outputs:

• Only fixed point data types are supported for the quantization error (Qerr)
port and output signals.

Parameters:

• Add internal dither is not supported for vector inputs

• If Quantize phase is selected, Number of quantized accumulator bits
should be greater than or equal to 4. A checkhdl error occurs if there are
fewer than 4 quantized accumulator bits.

• If Quantize phase is deselected, the accumulator Word length should
be greater than or equal to 4. A checkhdl error occurs if there are fewer
than 4 accumulator bits.

PN Sequence Generator Block Requirements and Restrictions
This block requires Communications Blockset™.

Inputs:

• You can select Input port as the Output mask source on the block.
However, in this case the Mask input signal must be a vector of data type
ufix1.

• If Reset on nonzero input is selected, the input to the Rst port must
have data type Boolean.

Outputs:

• Outputs of type double are not supported for HDL code generation. All
other output types (including bit packed outputs) are supported.
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Sine Wave Block Requirements and Restrictions
For HDL code generation, you must select the following Sine Wave block
settings:

• Computation method: Table lookup

• Sample mode: Discrete

Output:

• The output port cannot have data type single or double.

Restrictions on Use of Blocks in the Test Bench
In a model intended for use in HDL code generation, the DUT is typically
modeled as a subsystem at the top level of the model, driven by other blocks
or subsystems at the top level. These components make up the test bench.

Blocks that belong to the blocksets and toolboxes in the following list should
not be directly connected to the DUT at the top level of the model. Instead,
they should be placed in a subsystem, which is then connected to the DUT. All
blocks in the following blocksets are subject to this restriction:

• RF Blockset™

• SimDriveline™

• SimEvents®

• SimMechanics™

• SimPowerSystems™

• Simscape™
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Block Implementation Parameters

In this section...

“Overview” on page 5-60

“InputPipeline” on page 5-60

“OutputPipeline” on page 5-61

“ResetType” on page 5-62

“Interface Generation Parameters” on page 5-63

Overview
Block implementation parameters let you control details of the code generated
for specific block implementations. Block implementation parameters are
passed to forEach or forAll calls (see “forEach” on page 5-8) as cell arrays
of property/value pairs of the form

{'PropertyName', value}

Property names are strings. The data type of a property value is specific to
the property. This section describes the syntax of each block implementation
parameter, and how the parameter affects generated code.

InputPipeline
InputPipeline lets you specify a implementation with input pipelining for
selected blocks. The parameter value specifies the number of input pipeline
stages ( pipeline depth) in the generated code.

Syntax:

{'InputPipeline', nStages}

wherenStages >= 0.

The following forEach call specifies an input pipeline depth of two stages for
all Sum blocks in the model:

config.forEach('*',...
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'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {'InputPipeline', 2});

When generating code for pipeline registers, the coder appends a postfix
string to names of input or output pipeline registers. The default postfix
string is _pipe. To customize the postfix string, use the Pipeline postfix
option in the Global Settings / General pane in the HDL Coder pane
of the Configuration Parameters dialog box. Alternatively, you can pass
the desired postfix string in the makehdl property PipelinePostfix. See
PipelinePostfix for an example.

OutputPipeline
OutputPipeline lets you specify a implementation with output pipelining for
selected blocks. The parameter value specifies the number of output pipeline
stages ( pipeline depth) in the generated code.

Syntax:

{'OutputPipeline', nStages}

wherenStages >= 0.

The following forEach call specifies an output pipeline depth of two stages for
all Sum blocks in the model:

config.forEach('*',...
'built-in/Sum', {},...
'hdldefaults.SumLinearHDLEmission', {'OutputPipeline', 2});

When generating code for pipeline registers, the coder appends a postfix
string to names of input or output pipeline registers. The default postfix
string is _pipe. To customize the postfix string, use the Pipeline postfix
option in the Global Settings / General pane in the HDL Coder pane
of the Configuration Parameters dialog box. Alternatively, you can pass
the desired postfix string in the makehdl property PipelinePostfix. See
PipelinePostfix for an example.
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ResetType
The ResetType implementation parameter lets you suppress generation of
reset logic for the following block types:

• Integer Delay

• Tapped Delay

• Unit Delay

• Unit Delay Enabled

Syntax:

{'ResetType', 'default'}
{'ResetType', 'none'}

When you specify {'ResetType', 'none'} for a selection of one or more
blocks, the coder overrides the Global Settings/Advanced Reset type option
for the specified blocks only. Reset signals and synchronous or asynchronous
reset logic (as specified by Reset type) is still generated as required for
other blocks.

The default specification is {'ResetType', 'default'}. In this case, the
coder follows the Global Settings/Advanced Reset type option for the
specified blocks.

The following control file specifies suppression of reset logic for a specific
unit delay block within a subsystem.

function c = resetnone_examp

% Control file for resetnone_examp
c = hdlnewcontrol(mfilename);
c.generateHDLFor('resetnone_examp/HDLSubsystem');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Suppress reset logic for Unit Delay block

c.forEach('resetnone_examp/HDLSubsystem/Unit Delay',...
'built-in/UnitDelay', {},...
'hdldefaults.UnitDelayHDLEmission', {'ResetType','none'});
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Interface Generation Parameters
Some block implementation parameters let you customize features of an
interface generated for the following block types:

• simulink/Ports & Subsystems/Model

• built-in/Subsystem

• lfilinklib/HDL Cosimulation

• modelsimlib/HDL Cosimulation

For example, you can specify generation of a black box interface for a
subsystem, and pass parameters that specify the generation and naming
of clock, reset, and other ports in HDL code. For more information about
interface generation parameters, see “Customizing the Generated Interface”
on page 8-19.
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Blocks That Support Complex Data
You can use complex signals in the test bench without restriction.

In the device under test (DUT) selected for HDL code generation, support for
complex signals is limited to a subset of the blocks supported by the coder.
These blocks are listed in the following table. Some restrictions apply for
some of these blocks.

Note All blocks listed support the InputPipeline and OutputPipeline
implementation parameters.

Simulink® Block Restrictions

dspindex/Variable Selector

dspindex/Multiport Selector

dspsigattribs/Convert 1-D to 2-D

dspsigops/Downsample

dspsigops/NCO

dspsigops/Upsample

dspsrcs4/Sine Wave

sflib/Chart

simulink/Additional Math &
Discrete/Additional Discrete/Unit
Delay Enabled

simulink/Commonly Used
Blocks/Constant

simulink/Commonly Used
Blocks/Data Type Conversion

simulink/Commonly Used
Blocks/Gain
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Blocks That Support Complex Data

Simulink® Block Restrictions

simulink/Commonly Used
Blocks/Demux

simulink/Commonly Used
Blocks/Mux

simulink/Commonly Used
Blocks/Switch

simulink/Commonly Used
Blocks/Unit Delay

simulink/Discrete/Integer Delay

simulink/Discrete/Tapped Delay

simulink/Logic and Bit
Operations/Shift Arithmetic

simulink/Lookup Tables/Lookup
Table

Only LookupHDLEmission
implementation supports complex
data.

simulink/Math Operations/Complex
to Real-Imag

simulink/Math Operations/Unary
Minus

simulink/Math Operations/Math
Function ( conj)

Only the conj function supports
complex data.

simulink/Math Operations/Product
of Elements

Only the
ProductLinearHDLEmission
implementation supports complex
data.

Complex division is not supported.

simulink/Math
Operations/Real-Imag to Complex

simulink/Math Operations/Reshape
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Simulink® Block Restrictions

simulink/Math Operations/Subtract Only SumLinearHDLemission
implementation supports complex
data.

simulink/Math Operations/Sum of
Elements

Only SumLinearHDLemission
implementation supports complex
data.

simulink/Signal Attributes/Rate
Transition

simulink/Signal Attributes/Signal
Conversion

simulink/Signal Routing/Multiport
Switch

simulink/Signal Routing/Selector

simulink/User-Defined
Functions/Embedded MATLAB
Function

See also “Using Complex Signals” on
page 10-51
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6 Generating Bit-True Cycle-Accurate Models

Overview of Generated Models
In some circumstances, significant differences in behavior can arise between
a Simulink® model and the HDL code generated from that model. Such
differences fall into two categories:

• Numerics: differences in intermediate and/or final computations. For
example, a selected block implementation may restructure arithmetic
operations to optimize for speed (see “Example: Numeric Differences” on
page 6-4). Where such numeric differences exist, the HDL code is no longer
bit-true to the model.

• Latency: insertion of delays of one or more clock cycles at certain points in
the HDL code. Some block implementations that optimize for area can
introduce these delays. Where such latency exists, the timing of the HDL
code is no longer cycle-accurate with respect to the model.

To help you evaluate such cases, the coder creates a generated model that is
bit-true and cycle-accurate with respect to the generated HDL code. The
generated model lets you

• Run simulations that accurately reflect the behavior of the generated HDL
code.

• Create test benches based on the generated model, rather than the original
model.

• Visually detect (by color highlighting of affected subsystems) all differences
between the original and generated models.

The coder always creates a generated model as part of the code generation
process, and always generates test benches based on the generated model,
rather than the original model. In cases where no latency or numeric
differences occur, you can disregard the generated model except when
generating test benches.

The coder also provides options that let you

• Suppress display of the generated model.

• Create and display the only generated model, with code generation
suppressed.
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• Specify the color highlighting of differences between the original and
generated models.

• Specify a name or prefix for the generated model.

These options are described in “Defaults and Options for Generated Models”
on page 6-12.
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Example: Numeric Differences
This example first examines a simple model that uses a code generation
control file to select a speed-optimized Sum block implementation. It then
examines a generated model and locates the numeric changes introduced
by the optimization.

If you are not familiar with code generation control files and selection of block
implementations, see Chapter 5, “Code Generation Control Files”.

The model, simplevectorsum, consists of a subsystem, vsum, driven by a
vector input of width 10, with a scalar output. The following figure shows
the root level of the model.

The device under test is the vsum subsystem, shown in the following figure.
The subsystem contains a Sum block, configured for vector summation.

The model is configured to use a code generation control file, svsumctrl.m.
The control file (shown in the following listing) maps the SumTreeHDLEmission
implementation to the Sum block within the vsum subsystem. This
implementation, optimized for minimal latency, generates a tree-shaped
structure of adders for the Sum block.

function config = svsumctrl
% Code generation control file for simplevectorsum model.
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config = hdlnewcontrol(mfilename);
% Specify tree-structured adders implementaton for Sum block.
config.forEach('simplevectorsum/vsum/Sum',...

'built-in/Sum',{},...
'hdldefaults.SumTreeHDLEmission',{});

The File name field of the Configuration Parameters dialog box (shown in
the following figure) specifies that this control file is to be used during code
generation.

When code generation is initiated, the coder displays messages similar to
those shown in the following example. The messages indicate that the control
file is applied; control file processing is followed by creation of the generated
model and generation of HDL code.

### Applying HDL Code Generation Control Statements
### 1 Control Statements to be applied

6-5



6 Generating Bit-True Cycle-Accurate Models

### Begin Model Generation
### Generating new model: gm_simplevectorsum.mdl
### Model Generation Complete.

### Begin VHDL Code Generation
### Generating package file hdlsrc\vsum_pkg.vhd
### Working on simplevectorsum/vsum as hdlsrc\vsum.vhd
### HDL Code Generation Complete.

The generated model, gm_ simplevectorsum, is displayed after code
generation. This model is shown in the following figure.

At the root level, this model appears identical to the original model, except
that the vsum subsystem has been highlighted in cyan. This highlighting
indicates that the subsystem differs in some respect from the vsum subsystem
of the original model.

The following figure shows the vsum subsystem in the generated model.
Observe that the Sum block is now implemented as a subsystem, which is
also highlighted.

The following figure shows the internal structure of the Sum subsystem.
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The vector sum is implemented as a tree of adders (Sum blocks). The vector
input signal is demultiplexed and connected, as five pairs of operands, to
the five leftmost adders. The widths of the adder outputs increase from left
to right, as required to avoid overflow in computing intermediate results. A
Data Conversion block, inserted before the final output, converts the 20-bit
fixed-point result to the int16 data type required by the model.
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Example: Latency
This example uses the simplevectorsum_cascade model. This model
is identical to the model in the previous example (“Example: Numeric
Differences” on page 6-4), except that it uses a control file that selects a
cascaded implementation for the Sum block. This implementation introduces
both latency and numeric differences.

The model is configured to use the control file svsum_cascade_ctrl.m. The
control file (shown in the following listing) maps the SumCascadeHDLEmission
implementation to the Sum block within the vsum subsystem. This
implementation generates a cascade of adders for the Sum block.

function config = svsum_cascade_ctrl
% Code generation control file for simplevectorsum model.

config = hdlnewconfig(mfilename);

% specify cascaded adders implementation for Sum block

config.forEach('simplevectorsum_cascade/vsum/Sum',...
'built-in/Sum',{},...
'hdldefaults.SumCascadeHDLEmission',{});

The File name field of the Configuration Parameters dialog box (shown in the
following figure) specifies that this control file is used during code generation.
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When code generation is initiated, the coder displays messages similar to
those shown in the following example. The messages indicate that the control
file is applied; control file processing is followed by creation of the generated
model and generation of HDL code.

### Applying HDL Code Generation Control Statements

### 1 Control Statements to be applied

### Begin Model Generation

### Generating new model: gm_simplevectorsum_cascade.mdl

### Model Generation Complete.

### Begin VHDL Code Generation

### Generating package file hdlsrc\simplevectorsum_cascade_pkg.vhd

### Working on simplevectorsum_cascade/vsum as hdlsrc\vsum.vhd

### Working on Timing Controller as hdlsrc\Timing_Controller.vhd

### Working on simplevectorsum_cascade as hdlsrc\simplevectorsum_cascade.vhd

### HDL Code Generation Complete.
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In the generated code, partial sums are computed by adders arranged in a
cascade structure. Each adder computes a partial sum by demultiplexing and
adding several inputs in succession. These computation take several clock
cycles. On each cycle, an addition is performed; the result is then added to
the next input.

To complete all computations within one sample period, the system master
clock runs faster than the nominal sample rate of the system. A latency of one
clock cycle (in the case of this model) is required to transmit the final result
to the output. The inputs cannot change until all computations have been
performed and the final result is presented at the output.

The generated HDL code runs at two effective rates: a faster rate for
internal computations, and a slower rate for input/output. A special
Timing_Controller entity generates these rates from a single master clock
using counters and multiple clock enables. The Timing_Controller entity
definition is written to a separate code file.

The generated model, gm_simplevectorsum_cascade, is displayed after code
generation. This model is shown in the following figure.

As in the previous (gm_simplevectorsum) example, the vsum subsystem is
highlighted in cyan. This highlighting indicates that the subsystem differs in
some respect from the vsum subsystem of the original model.

The following block diagram shows the vsum subsystem in the generated
model. The subsystem has been restructured to reflect the structure of the
generated HDL code; inputs are grouped and routed to three adders for
partial sum computations.
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A Unit Delay (highlighted in cyan) has been inserted before the final output.
This block delays, (in this case for one sample period), the appearance of
the final sum at the output. The delay reflects the latency of the generated
HDL code.

Note The HDL code generated from the example model used in this section
is bit-true to the original model.

However, in some cases, cascaded block implementations can produce numeric
differences between the original model and the generated HDL code, in
addition to the introduction of latency. Numeric differences can arise from
saturation and rounding operations.
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Defaults and Options for Generated Models

In this section...

“Defaults for Model Generation” on page 6-12

“GUI Options” on page 6-13

“Generated Model Properties for makehdl” on page 6-14

Defaults for Model Generation
This section summarizes the defaults used by the coder when generated
models are built.

Model Generation
The coder always creates a generated model as part of the code generation
process. The generated model is built in memory, before actual generation
of HDL code. The HDL code and the generated model are bit-true and
cycle-accurate with respect to one another.

Note The in-memory generated model is not written to a model file unless
you explicitly save it.

Naming of Generated Models
The naming convention for generated models is

prefix_modelname

where the default prefix is gm_, and the default modelname is the name of
the original model.

If code is generated more than once from the same original model, and
previously generated model(s) exist in memory, an integer is suffixed to the
name of each successively generated model. The suffix ensures that each
generated model has a unique name. For example, if the original model is
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named test, generated models will be named gm_test, gm_test0, gm_test1,
etc.

Note Take care, when regenerating code from your models, to select the
original model for code generation, not a previously generated model.
Generating code from a generated model may introduce unintended delays or
numeric differences that could make the model operate incorrectly.

Block Highlighting
By default, blocks in a generated model that differ from the original model,
and their ancestor (parent) blocks in the model hierarchy, are highlighted in
the default color, cyan. You can quickly see whether any differences have been
introduced, by examining the root level of the generated model.

If there are no differences between the original and generated models, no
blocks will be highlighted.

GUI Options
The Simulink® HDL Coder™ GUI provides high-level options controlling
the generation and display of generated models. More detailed control is
available through the makehdl command (see “Generated Model Properties
for makehdl” on page 6-14). Generated model options are located in the
top-level HDL Options pane of the Configuration Parameters dialog box, as
shown in the following figure.
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The options are

• Generate HDL code: (Default) Generate code, but do not display the
generated model.

• Display generated model only: Create and display the generated model,
but do not proceed to code generation.

• Generate HDL code and display generated model: Generate both
code and model, and display the model when completed.

Generated Model Properties for makehdl
The following table summarizes makehdl properties that provide detailed
controls for the generated model.
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Property and Value(s) Description

'Generatedmodelnameprefix',
['string']

The default name for the generated model is
gm_modelname, where gm_ is the default prefix and
modelname is the original model name. To override
the default prefix, assign a string value to this
property.

'Generatemodelname', ['string'] By default, the original model name is used as the
modelname substring of the generated model name.
To specify a different model name, assign a string
value to this property.

'CodeGenerationOutput', 'string' Controls the production of generated code and
display of the generated model. Values are
• GenerateHDLCode: (Default) Generate code, but

do not display the generated model.

• GenerateHDLCodeAndDisplayGeneratedModel:
Create and display generated model, but do not
proceed to code generation.

• DisplayGeneratedModelOnly: Generate both
code and model, and display model when
completed.
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Property and Value(s) Description

'Highlightancestors', ['on' |
'off']

By default, blocks in a generated model that differ
from the original model, and their ancestor (parent)
blocks in the model hierarchy, are highlighted in
a color specified by the Highlightcolor property.
If you do not want the ancestor blocks to be
highlighted, set this property to'off'.

'Highlightcolor', 'RGBName' Specify the color used to highlight blocks in a
generated model that differ from the original model
(default: cyan). Specify the color (RGBName) as one
of the following color string values:

• cyan (default)

• yellow

• magenta

• red

• green

• blue

• white

• black
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Fixed-Point and Double Precision Limitations for
Generated Models

In this section...

“Fixed-Point Limitation” on page 6-17

“Double Precision Limitation” on page 6-17

Fixed-Point Limitation
The maximum Simulink® fixed-point word size is 128 bits. HDL does not
have such a limit. This can lead to cases in which the generated HDL code is
not bit-true to the generated model.

When the result of a computation in the generated HDL code has a word size
greater than 128 bits:

• The coder issues a warning.

• Computations in the generated model (and the generated HDL test bench)
are limited to a result word size of 128 bits.

• This word size limitation does not apply to the generated HDL code, so
results returned from the HDL code may not match the HDL test bench or
the generated model.

Double Precision Limitation
When the binary point in double-precision computations is very large or
very small, the scaling can become inf or 0. The limits of precision can be
expressed as follows:

log2(realmin) ==> -1022

log2(realmax) ==> 1024

Where these limits are exceeded, the binary point is saturated and a warning
is issued. If the generated HDL code has binary point scaling greater than
2^1024, the generated model has a maximum scaling of 2^1024.
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Similarly if the generated HDL code has binary point scaling smaller than
2^-1022, then the generated model has scaling of 2^-1022.
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HDL Compatibility Checker
The HDL compatibility checker lets you check whether a subsystem or model
is compatible with HDL code generation. You can run the compatibility
checker from the command line or an M-file script, or from the GUI.

To run the compatibility checker from the command line or an M-file script,
use the checkhdl function. The syntax of the function is

checkhdl('system')

where system is the device under test (DUT), typically a subsystem within
the current model.

To run the compatibility checker from the GUI:

1 Open the Configuration Parameters dialog box or the Model Explorer.
Select the HDL Coder options category. The following figure shows the
HDL Coder pane of the Configuration Parameters dialog box.
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2 Select the subsystem you want to check from the Generate HDL for
pop-up menu.

3 Click the Run Compatibility Checker button.

The HDL compatibility checker examines the specified system for any
compatibility problems, such as use of unsupported blocks, illegal data
type usage, etc. The HDL compatibility checker generates an HDL Code
Generation Check Report, which is stored in the target directory. The report
file naming convention is system_report.html, where system is the name of
the subsystem or model that was passed in to the HDL compatibility checker.

The HDL Code Generation Check Report is displayed in a browser window.
Each entry in the HDL Code Generation Check Report is hyperlinked to the
block or subsystem that caused the problem. When you click the hyperlink,
the block of interest highlights and displays (provided that the model
referenced by the report is open).
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The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem with a Product block that was configured with a
mixture of double and integer port data types. This configuration is legal in a
model, but incompatible with HDL gode generation.

When you click the hyperlink in the left column, the subsystem containing
the offending block opens. The block of interest is highlighted, as shown in
the following figure.
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The following figure shows an HDL Code Generation Check Report that was
generated for a subsystem that passed all compatibility checks. In this case,
the report contains only a hyperlink to the subsystem that was checked.
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Code Tracing Using the Mapping File

Note This section refers to generated VHDL entities or Verilog modules
generically as “entities.”

A mapping file is a text report file generated by makehdl. Mapping files
are generated as an aid in tracing generated HDL entities back to the
corresponding systems in the model.

A mapping file shows the relationship between systems in the model and the
VHDL entities or Verilog modules that were generated from them. A mapping
file entry has the form

path --> HDL_name

where path is the full path to a system in the model and HDL_name is the
name of the VHDL entity or Verilog module that was generated from that
system. The mapping file contains one entry per line.

In simple cases, the mapping file may contain only one entry. For example,
the symmetric_fir subsystem of the sfir_fixed demo model generates the
following mapping file:

sfir_fixed/symmetric_fir --> symmetric_fir

Mapping files are more useful when HDL code is generated from complex
models where multiple subsystems generate many entities, and in cases where
conflicts between identically named subsystems are resolved by the coder.

If a subsystem name is unique within the model, the coder simply uses the
subsystem name as the generated entity name. Where identically named
subsystems are encountered, the coder attempts to resolve the conflict
by appending a postfix string (by default, '_entity') to the conflicting
subsystem. If subsequently generated entity names conflict in turn with this
name, incremental numerals (1,2,3,...n) are appended.

As an example, consider the model shown in the following figure. The
top-level model contains subsystems named A nested to three levels.
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When code is generated for the top-level subsystem A, makehdl works its way
up from the deepest level of the model hierarchy, generating unique entity
names for each subsystem.
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makehdl('top/A')
### Working on top/A/A/A as A_entity1.vhd
### Working on top/A/A as A_entity2.vhd
### Working on top/A as A.vhd

### HDL Code Generation Complete.

The following example lists the contents of the resultant mapping file.

top/A/A/A --> A_entity1
top/A/A --> A_entity2
top/A --> A

Given this information, you could trace any generated entity back to its
corresponding subsystem by using the open_system command, for example:

open_system('top/A/A')

Each generated entity file also contains the path for its corresponding
subsystem in the header comments at the top of the file, as in the following
code excerpt.

-- Module: A_entity2
-- Simulink Path: top/A
-- Created: 2005-04-20 10:23:46
-- Hierarchy Level: 0
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Supported Blocks Library
The M-file utility hdllib.m creates a library of all blocks that are currently
supported for HDL code generation. The block library, hdlsupported.mdl,
affords quick access to all supported blocks. By constructing models using
blocks from this library, you can ensure that your models are compatible
with HDL code generation.

The set of supported blocks will change in future releases of the coder. To keep
the hdlsupported.mdl current, you should rebuild the library each time you
install a new release. To create the library:

1 Type the following at the MATLAB® prompt:

hdllib

hdllib starts generation of the hdlsupported library. Many libraries load
during the creation of the hdlsupported library. When hdllib completes
generation of the library, it does not unload these libraries.

2 After the library is generated, you must save it to a directory of your choice.
You should retain the file name hdlsupported.mdl, because this document
refers to the supported blocks library by that name.
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Overview of HDL Interfaces
The coder provides a number of different ways to generate interfaces to your
manually-written or legacy HDL code. Depending on your application, you
may want to generate such an interface from different levels of your model:

• Subsystem

• Model referenced by a higher-level model

• HDL Cosimulation block

• RAM blocks

For most such interfaces, you can use interface generation parameters in your
control file to control generation and naming of ports and other attributes of
the generated interface.

You can also generate a pass-through (wire) HDL implementation for a
subsystem, or omit code generation entirely for a subsystem. Both of these
techniques can be useful in cases where you need a subsystem in your
simulation, but do not need the subsystem in your generated HDL code.
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Generating a Black Box Interface for a Subsystem
A black box interface for a subsystem is a generated VHDL component or
Verilog module that includes only the HDL input/output port definitions for
the subsystem. By generating such a component, you can use a subsystem in
your model to generate an interface to existing manually-written HDL code.

To generate the interface, you use a control file to map one or more Subsystem
blocks to the hdldefaults.SubsystemBlackBoxHDLInstantiation
implementation. (See Chapter 5, “Code Generation Control Files” for a
detailed description of the structure and use of control files.)

As an example, consider the model and subsystem shown in the following
figures. The model, subsystst, contains a subsystem, top, which is the
device under test.

The subsystem top contains two lower-level subsystems, gencode and
Interface.
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Suppose that you want to generate HDL code from top, with a
black box interface from the Interface subsystem. The first step
would be to create a control file that defines the path and block
type for the Interface subsystem, and maps this subsystem to the
hdldefaults.SubsystemBlackBoxHDLInstantiation implementation. The
following listing shows an example control file.

% Code generation control file - blackbox_ctrl.m

function control = blackbox_ctrl

control = hdlnewcontrol(mfilename);

% Generate a black box interface for the subsystem labeled

% Interface within the top-level device

control.forEach( ...

'subsystst/top/Interface', ...

'built-in/SubSystem', {}, ...

'hdldefaults.SubsystemBlackBoxHDLInstantiation');

The control file is attached to the model when code generation is invoked. In
the following makehdl command line, VHDL code is generated by default.

makehdl('subsystst/top','HDLControlFiles',{'blackbox_ctrl.m'})

### Applying User Configuration File: blackbox_ctrl.m

### Begin Vhdl Code Generation

### Working on subsystst/top/gencode as hdlsrc/gencode.vhd

### Working on subsystst/top as hdlsrc/top.vhd

### HDL Code Generation Complete.

In the makehdl progress messages, observe that the gencode subsystem
generates a separate code file (gencode.vhd) for its VHDL entity definition.
The Interface subsystem does not generate such a file. The interface code for
this subsystem is in top.vhd, generated from subsystst/top. The following
code listing shows the component definition and instantiation generated for
the Interface subsystem.

COMPONENT Interface

PORT( In1 : IN std_logic_vector(7 DOWNTO 0); -- ufix8

In2 : IN std_logic_vector(15 DOWNTO 0); -- ufix16

In3 : IN std_logic_vector(31 DOWNTO 0); -- ufix32
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Out1 : OUT std_logic_vector(31 DOWNTO 0) -- ufix32

);

END COMPONENT;

...

u_Interface : Interface

PORT MAP

(In1 => gencode_out1, -- ufix8

In2 => gencode_out2, -- ufix16

In3 => gencode_out3, -- ufix32

Out1 => Interface_out1 -- ufix32

);

ce_out <= enb;

The black box interface generated for subsystems is similar to the interface
generated for Model blocks, but without generation of clock signals. (See also
“Generating Interfaces for Referenced Models” on page 8-6.)
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Generating Interfaces for Referenced Models
The Simulink® model referencing feature allows you to include models in
other models as blocks. Included models are referenced through Model blocks
(see the “Referencing a Model” documentation for detailed information).

For Model blocks, the coder generates a VHDL component or a Verilog module
instantiation. However, makehdl does not attempt to generate HDL code for
the models referenced from Model blocks. You must generate HDL code for
each referenced model individually. To generate code for a referenced model:

1 Select the referencing Model block.

2 Double-click the Model block to open the referenced model.

3 Invoke the checkhdl and makehdl functions to check and generate code
from that model.

Note The checkhdl function does not check port data types within the
referenced model.

The Model block is useful for multiply-instantiated blocks, or for blocks for
which you already have manually-written HDL code. The generated HDL will
contain all the code that is required to interface to the referenced HDL code.
Code is generated with the following assumptions:

• Every HDL entity or module requires clock, clock enable, and reset ports.
Therefore, these ports are defined for each generated entity or module.

• Use of Simulink data types is assumed. For VHDL code, port data types
are assumed to be STD_LOGIC or STD_LOGIC_VECTOR.
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Code Generation for HDL Cosimulation Blocks
The coder supports HDL code generation for the HDL Cosimulation blocks
provided by the following products:

• EDA Simulator Link™ MQ

• EDA Simulator Link IN

• EDA Simulator Link DS

Each of the HDL Cosimulation blocks cosimulates a hardware component by
applying input signals to, and reading output signals from, an HDL model
that executes under an HDL simulator. For detailed information on the HDL
Cosimulation blocks, see the documentation for these products.

You can use an HDL Cosimulation block with the coder to generate an
interface to your manually-written or legacy HDL code. When an HDL
Cosimulation block is included in a model, the coder generates a VHDL or
Verilog interface, depending on the selected target language.

When the target language is VHDL, the generated interface includes

• An entity definition. The entity defines ports (input, output, and clock)
corresponding in name and data type to the ports configured on the HDL
Cosimulation block. Clock enable and reset ports are also declared.

• An RTL architecture including a component declaration, a component
configuration declaring signals corresponding to signals connected to the
HDL Cosimulation ports, and a component instantiation.

• Port assignment statements as required by the model.

When the target language is Verilog, the generated interface includes

• A module defining ports (input, output, and clock) corresponding in name
and data type to the ports configured on the HDL Cosimulation block. The
module also defines clock enable and reset ports, and wire declarations
corresponding to signals connected to the HDL Cosimulation ports.

• A module instance.

• Port assignment statements as required by the model.
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The requirements for using the HDL Cosimulation block for code generation
are the same as those for cosimulation. If you want to check these conditions
before initiating code generation, select Update Diagram from the Edit
menu.
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Generating an Interface for RAM Blocks

In this section...

“Overview of RAM Blocks” on page 8-9

“Dual Port RAM Block” on page 8-11

“Simple Dual Port RAM Block” on page 8-12

“Single Port RAM Block” on page 8-14

“Code Generation with RAM Blocks” on page 8-17

“Limitations” on page 8-18

Overview of RAM Blocks
The RAM blocks let you:

• Simulate the behavior of a single-port or dual-port RAM in your model.

• Generate an interface to the inputs and outputs of the RAM in HDL code.

• Generate RTL code that can be inferred as a RAM by most synthesis tools,
for most FPGAs.

The RAM blocks are available in the hdldemolib library. The library provides
three type of RAM blocks (see the following figure):

• Dual Port RAM

• Simple Dual Port RAM

• Single Port RAM
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To open the library, type the following command at the MATLAB® prompt:

hdldemolib

Then, drag the desired RAM block from the hdldemolib library to your model,
and set the block parameters and connect signals following the guidelines in
the following sections.

RAM Block Demo
The RAM-Based FIR Filter demo (hdlcoderfirram.mdl) provides an example
of VHDL code generation for a Dual Port RAM block. Run this demo to
acquaint yourself with the generated code.
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The HDL device under test (DUT) in the model is the FIR_RAM subsystem.
The FIR_RAM subsystem contains a Dual Port RAM block. The entity
and architecture definitions generated for this block are written to
Dual_Port_RAM.vhd.

The code generated for the top-level DUT, FIR_RAM.vhd, contains the
component instantiation for the Dual Port RAM block.

Dual Port RAM Block

Dual Port RAM Block Ports and Parameters
The following figure shows the Dual Port RAM block.

The block has the following input and output ports:

• wr_din : Data input. Only scalar signals can be connected to this port.
The data type of the input signal must be fixed point or integer, and can
be of any desired width. The port inherits the width and data type of its
input signal.

• wr_addr, rd_addr: Write and read address ports, respectively.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 16 bits ) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.
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• wr_en: Write enable. This port must be connected to a Boolean signal.

• wr_dout, rd_dout: Output ports with read data for addresses wr_addr
and rd_addr, respectively.

Note If data output at the write port is not required, you can achieve better
RAM inference with synthesis tools by using the Simple Dual Port RAM block
rather than the Dual Port RAM block.

Read-During-Write Behavior
During a write, new data appears at the output of the write port (wr_dout)
of the Dual Port RAM block. If a read operation is performed at the same
address at the read port, new data is read at the output (rd_dout).

Simple Dual Port RAM Block

Simple Dual Port RAM Block Ports and Parameters
The following figure shows the Simple Dual Port RAM block.
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This block is similar to the Dual Port RAM. It differs from Dual Port RAM in
its read-during-write behavior, and it does not have the data output at the
write port (wr_dout).

The block has the following input and output ports:

• wr_din : Data input. Only scalar signals can be connected to this port.
The data type of the input signal must be fixed point or integer, and can
be of any desired width. The port inherits the width and data type of its
input signal.

• wr_addr, rd_addr: Write and read address ports, respectively.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 16 bits ) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.
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• wr_en: Write enable. This port must be connected to a Boolean signal.

• rd_dout: Output port with read data for addresses wr_addr and rd_addr,
respectively.

Read-During-Write Behavior
During a write operation, if a read operation is performed at the same address
at the read port, old data is read at the output.

Single Port RAM Block

Single Port RAM Block Ports and Parameters
The following figure shows the Single Port RAM block.
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The block has the following input and output ports:

• din : Data input. Only scalar signals can be connected to this port. The
data type of the input signal must be fixed point or integer, and can be of
any desired width. The port inherits the width and data type of its input
signal.

• addr:Write address port.

To set the width of the address ports, enter the desired width value
(minimum width 2 bits, maximum width 16 bits ) into the Address port
width field of the block GUI, as shown in the following figure. The default
width is 8 bits.

The data type of signals connected to these ports must be unsigned integer
(uintN) or unsigned fixed point (ufixN) with a fraction length of 0.
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• we: Write enable. This port must be connected to a Boolean signal.

• dout: Output port with data for address addr.

Read-During-Write Behavior
The Output data during write drop-down menu provides options that
control how the RAM handles output/read data. These options are:

• New data (default): During a write, new data appears at the output port
(dout).

• Old data: During a write, old data appears at the output port (dout).

Note Depending on your synthesis tool and target device, the setting of
Output data during write may affect the result of RAM inference. See
“Limitations” on page 8-18 for further information on read-during-write
behavior in hardware.
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Code Generation with RAM Blocks

The following general considerations apply to code generation for any of the
RAM blocks:

• Code generated for a RAM block is generated to a separate file in the target
directory. The naming convention for this file is blockname.ext, where
blockname is derived from the name assigned to the RAM block, and ext is
the target language file-name extension.

• RAM blocks are implemented as subsystems, primarily for use in
simulation. The coder generates a top-level interface (entity and RTL
architecture) for the block; code is not generated for the underlying blocks.
The generated interface is similar to the subsystem interface described in
“Generating a Black Box Interface for a Subsystem” on page 8-3.

• For all RAM blocks, data reads out from the output ports with a latency
of 1 clock cycle.

• The generated code for the RAM blocks does not include a reset signal.
Generation of a reset is omitted because in the presence of a reset signal,
synthesis tools would not infer a RAM from the HDL code.

• Most synthesis tools will infer RAM from the generated HDL code.
However, your synthesis tool may not map the generated code to RAM for
the following reasons:

- A small RAM size: your synthesis tool may implement a small RAM with
registers for better performance.

- The presence of a clock enable signal. It is possible to suppress
generation of a clock enable signal Dual Port RAM and Single Port RAM
blocks, as described in “Limitations” on page 8-18.

Take care to verify that your synthesis tool produces the expected result
when synthesizing code generated for the Dual Port RAM block.

If data output at the write port is not required, you can achieve better RAM
inferring with synthesis tools by using the Simple Dual Port RAM block
rather than the Dual Port RAM block.
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Limitations
The following limitations apply to the use of RAM blocks in HDL code
generation:

• If you use RAM blocks to perform concurrent read and write operations,
you should manually verify the read-during-write behavior in hardware.
The read-during-write behavior of the RAM blocks in Simulink® matches
that of the generated behavioral HDL code. However, a synthesis tool
may not follow the same behavior during RAM inferring, causing the
read-during-write behavior in hardware to differ from the behavior of the
Simulink model or generated HDL code. Actual read-during-write behavior
in hardware depends on how synthesis tools infer RAM from generated
HDL code, and on the hardware architecture of the target device.

• Some synthesis tools do not support RAM inference with a clock
enable. For the Dual Port RAM and Single Port RAM blocks, you can
suppress generation of the clock enable signal. These blocks support the
AddClockEnablePort implementation parameter. The default setting for
AddClockEnablePort in 'on'. To suppress to generation of the clock enable
signal, set AddClockEnablePort to off for the desired RAM block(s) in a
control file, as in the following example.

function c = controlfilename

% Control file for hdlcoderfirram

c = hdlnewcontrol(mfilename);

c.generateHDLFor('hdlcoderfirram/FIR_RAM');
c.forEach('hdlcoderfirram/FIR_RAM/Dual Port RAM',...
'hdldemolib/Dual Port RAM', {},...
'hdldefaults.RamBlockDualHDLInstantiation',...
{'AddClockEnablePort','off'});

• In a multirate model, if RAM blocks run at a slower rate than the model’s
base rate (fastest rate), the behavior of the generated code will no longer
match that of the Simulink model. If you want to ensure that the Simulink
model and the generated code behave identically, make sure that the RAM
blocks run at the base rate of the model.
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Customizing the Generated Interface
Interface generation parameters let you customize port names and other
attributes of interfaces generated for the following block types:

• simulink/Ports & Subsystems/Model

• built-in/Subsystem

• lfilinklib/HDL Cosimulation

• modelsimlib/HDL Cosimulation

The following table summarizes the names, value settings, and purpose of the
interface generation parameters. All parameters have string data type.

Parameter Name Values Description

AddClockEnablePort 'on' | 'off'

Default: 'on'

If 'on', add a clock enable
input port to the interface
generated for the block. The
name of the port is specified
by ClockEnableInputPort.

AddClockPort 'on' | 'off'

Default: 'on'

If 'on', add a clock input port
to the interface generated
for the block. The name
of the port is specified by
ClockInputPort.

AddResetPort 'on' | 'off'

Default: 'on'

If 'on', add a reset input port
to the interface generated
for the block. The name
of the port is specified by
ResetInputPort.

ClockEnableInputPort Default: 'clk_enable' Specifies HDL name for
block’s clock enable input
port.

ClockInputPort Default: 'clk' Specifies HDL name for
block’s clock input signal.
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Parameter Name Values Description

EntityName Default: Entity name is derived
from the block name, modified if
necessary to generate a legal VHDL
entity name.

Specifies VHDL entity
or Verilog module name
generated for the block.

InlineConfigurations
(VHDL only)

'on' | 'off'

Default: If this parameter is
unspecified, defaults to the value of
the global InlineConfigurations
property.

If 'off', suppress generation
of a configurations for
the block, and require
a user-supplied external
configuration.

ResetInputPort Default: 'reset' Specifies HDL name for
block’s reset input.

VHDLArchitectureName
(VHDL only)

Default: 'RTL' Specifies RTL architecture
name generated for the
block. The architecture
name is generated only if
InlineConfigurations =
'on'.
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Pass-Through and No-Op Implementations
The coder provides special-purpose implementations that let you use a block
as a wire, or simply omit a block entirely, in the generated HDL code. These
implementations are summarized in the following table.

Implementation Description

hdldefaults.PassThroughHDLEmission Provides a pass-through implementation in which
the block’s inputs are passed directly to its outputs.
(In effect, the block becomes a wire in the HDL
code.)

hdldefaults.NoHDLEmission Completely removes the block from the generated
code. Lets you use the block in simulation but treat
it as a no-op in the HDL code. You can also use this
implementation as an alternative implementation
for subsystems.

The coder uses these implementations for many built-in blocks (such as
Scopes and Assertions) that are significant in simulation but would be
meaningless in HDL code.
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Limitation on Generated Verilog Interfaces
This section describes a limitation in the current release that applies to
generation of Verilog interfaces for the following blocks:

• EDA Simulator Link™ MQ HDL Cosimulation block

• EDA Simulator Link IN HDL Cosimulation block

• EDA Simulator Link DS HDL Cosimulation block

• Model block

• Subsystem black box implementation
(hdldefaults.SubsystemBlackBoxHDLInstantiation)

When the target language is Verilog, only scalar ports are supported for code
generation for these block types. Use of vector ports that are on these blocks
will be reported as errors on the compatibility checker (checkhdl) report, and
will raise a code generator (makehdl) run-time error.
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Overview of Stateflow® HDL Code Generation

In this section...

“Overview” on page 9-2

“Demos and Related Documentation” on page 9-2

Overview
Stateflow® charts provide concise descriptions of complex system behavior
using hierarchical finite state machine (FSM) theory, flow diagram notation,
and state-transition diagrams.

You use a chart to model a finite state machine or a complex control
algorithm intended for realization as an ASIC or FPGA. When the model
meets design requirements, you then generate HDL code (VHDL or Verilog)
that implements the design embodied in the model. You can simulate and
synthesize generated HDL code using industry standard tools, and then map
your system designs into FPGAs and ASICs.

In general, generation of VHDL or Verilog code from a model containing a
chart does not differ greatly from HDL code generation from any other model.
The HDL code generator is designed to

• Support the largest possible subset of chart semantics that is consistent
with HDL. This broad subset lets you generate HDL code from existing
models without significant remodeling effort.

• Generate bit-true, cycle-accurate HDL code that is fully compatible with
Stateflow simulation semantics.

Demos and Related Documentation

Demos
The following demos, illustrating HDL code generation from subsystems that
include Stateflow charts, are available:

• Greatest Common Divisor
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• Pipelined Configurable FIR

• 2D FDTD Behavioral Model

• CPU Behavioral Model

To open the demo models, type the following command:

demos

This command opens the Help window. In the Demos pane on the left, select
Simulink > Simulink HDL Coder. Then, double-click the icon for any of
the following demos, and follow the instructions in the demo window.

Related Documentation
If you are familiar with Stateflow charts and Simulink® models but have
not yet tried HDL code generation, see the hands-on exercises in Chapter 2,
“Introduction to HDL Code Generation”.

If you are not familiar with Stateflow charts, see Stateflow Getting Started
Guide. See also the Stateflow and Stateflow® Coder™ User’s Guide.
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A Quick Guide to Requirements for Stateflow® HDL Code
Generation

In this section...

“Location of Charts in the Model” on page 9-4

“Data Type Usage” on page 9-4

“Chart Initialization” on page 9-5

“Registered Output” on page 9-5

“Restrictions on Imported Code” on page 9-5

“Other Restrictions” on page 9-6

This section summarizes the requirements and restrictions you should follow
when configuring Stateflow® charts that are intended to target HDL code
generation. “Mapping Chart Semantics to HDL” on page 9-8 provides a more
detailed rationale for most of these requirements.

Location of Charts in the Model
A chart intended for HDL code generation must be part of a Simulink®

subsystem. See “Structuring a Model for HDL Code Generation” on page
9-24 for an example.

Data Type Usage

Supported Data Types
The current release supports a subset of MATLAB® data types in charts
intended for use in HDL code generation. Supported data types are

• Signed and unsigned integer

• Double and single

• Fixed point

• Boolean
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Note Multidimensional arrays of these types are supported, with the
exception of data types assigned to ports. Port data types must be either
scalar or vector.

Chart Initialization
In charts intended for HDL code generation, enable the chart property
Execute (enter) Chart at Initialization. When this property is enabled,
default transitions are tested and all actions reachable from the default
transition taken are executed. These actions correspond to the reset process in
HDL code. “Executing a Chart at Initialization” describes existing restrictions
under this property.

The reset action must not entail the delay of combinatorial logic. Therefore,
do not perform arithmetic in initialization actions.

Registered Output
The chart property Initialize Outputs Every Time Chart Wakes Up exists
specifically for HDL code generation. This property lets you control whether
output is persistent (stored in registers) from one sample time to the next.
Such use of registers is termed registered output.

When the Initialize Outputs Every Time Chart Wakes Up option is
deselected (the default), registered output is used.

When the Initialize Outputs Every Time Chart Wakes Up option is
selected, registered output is not used. A default initial value (defined in the
Initial value field of the Value Attributes pane of the Data Properties
dialog box) is given to each output when the chart wakes up. This assignment
guarantees that there is no reference to outputs computed in previous time
steps.

Restrictions on Imported Code
A chart intended for HDL code generation must be entirely self-contained.
The following restrictions apply:
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• Do not call MATLAB functions other than min or max.

• Do not use MATLAB workspace data.

• Do not call C math functions

• If the Enable C-like bit operations property is disabled, do not use the
exponentiation operator (^). The exponentiation operator is implemented
with the C Math Library function pow.

• Do not include custom code. Any information entered in the Target Options
dialog box is ignored.

Other Restrictions
The coder imposes a number of additional restrictions on the use of classic
chart features. These limitations exist because HDL does not support some
features of general-purpose sequential programming languages.

• Do not define machine-parented data, machine-parented events, or local
events in a chart from which HDL code is to be generated.

Do not use the following implicit events:

- enter

- exit

- change

You can use the following implicit events:

- wakeup

- tick

Temporal logic can be used provided the base events are limited to these
types of implicit events.

• Do not use recursion through graphical functions. The coder does not
currently support recursion.

• Do not explicitly use loops other than for loops, such as in flow diagrams.

Only constant-bounded loops are supported for HDL code generation. See
the FOR Loop demo (sf_for.mdl) to learn how to create a for loop using
a graphical function.
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• HDL does not support a goto statement. Therefore, do not use unstructured
flow diagrams, such as the flow diagram shown in the following figure.

• Do not read from output ports if outputs are not registered. (Outputs are
not registered if the Initialize Outputs Every Time Chart Wakes Up
option is selected. See also “Registered Output” on page 9-5.)

• Do not use Data Store Memory objects.

• Do not use pointer (&) or indirection (*) operators. See the discussion of
“Pointer and Address Operations”.

• If a chart gets a runtime overflow error during simulation, it is possible
to disable data range error checking and generate HDL code for the chart.
However, in such cases the coder cannot guarantee that results obtained
from the generated HDL code are bit-true to results obtained from the
simulation. Recommended practice is to enable overflow checking and
eliminate overflow conditions from the model during simulation.

9-7



9 Stateflow® HDL Code Generation Support

Mapping Chart Semantics to HDL

In this section...

“Software Realization of Chart Semantics” on page 9-8

“Hardware Realization of Stateflow® Semantics” on page 9-10

“Restrictions for HDL Realization” on page 9-13

Software Realization of Chart Semantics
The top-down semantics of a chart describe how the chart executes. chart
semantics describe an explicit sequential execution order for elements of
the chart, such as states and transitions. These deterministic, sequential
semantics map naturally to sequential programming languages, such as C.
To support the rich semantics of a chart in the Simulink® environment, it is
necessary to combine the state variable updates and output computation
in a single function.

Consider the example model shown in the following figure. The root level of
the model contains three blocks (Sum, Gain and a Stateflow® chart) connected
in series.
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The chart from the model is shown in the following figure.

The following Real-Time Workshop® C code excerpt was generated from this
example model. The code illustrates how the chart combines the output
computation and state-variable update.

/* Output and update for atomic system: '<Root>/Chart' */

void hdl_ex_Chart(void)

{

/* Stateflow: '<Root>/Chart' */
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switch (hdl_ex_DWork.Chart.is_c1_hdl_ex) {

case hdl_ex_IN_Off:

if (hdl_ex_B.Gain >= 100.0) {

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_On;

}

break;

case hdl_ex_IN_On:

if (hdl_ex_B.Gain < 100.0) {

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_Off;

} else {

hdl_ex_B.y = hdl_ex_B.Gain;

}

break;

default:

hdl_ex_DWork.Chart.is_c1_hdl_ex = (uint8_T)hdl_ex_IN_On;

break;

}

}

The preceding code assigns either the state or the output, but not both. Values
of output variables, as well as state, persist from one time step to another. If
an output value is not assigned during a chart execution, the output simply
retains its value (as defined in a previous execution).

Hardware Realization of Stateflow® Semantics
The following diagram shows a sequential implementation of Stateflow
semantics for output/update computations, appropriate for targeting the C
language.
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A mapping from Stateflow semantics to an HDL implementation demands a
different approach. The following requirements must be met:

• Requirement 1: Hardware designs require separability of output and
state update functions.

• Requirement 2: HDL is a concurrent language. To achieve the goal of
bit-true simulation, execution ordering must be correct.

To meet Requirement 1, an FSM is coded in HDL as two concurrent
blocks that execute under different conditions. One block evaluates the
transition conditions, computes outputs and speculatively computes the
next state variables. The other block updates the current state variables
from the available next state and performs the actual state transitions. This
second block is activated only on the trigger edge of the clock signal, or an
asynchronous reset signal.

In practice, output computations usually occur more often than state updates.
The presence of inputs drives the computation of outputs. State transitions
occur at regular intervals (whenever the chart is activated).

The following diagram shows a concurrent implementation of Stateflow
semantics for output and update computations, appropriate for targeting
HDL.
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The HDL code generator reuses the original single-function implementation
of Stateflow semantics almost without modification. There is one important
difference: instead of computing with state variables directly, all state
computations are performed on local shadow variables. These variables
are local to the HDL function update_chart. At the beginning of the
update_chart functions, current_state is copied into the shadow variables.
At the end of the update_chart function, the newly computed state is
transferred to registers called collectively next_state. The values held
in these registers are copied to current_state (also registered) when
update_state is called.

By using local variables, this approach maps Stateflow sequential semantics
to HDL sequential statements, avoiding the use of concurrent statements.
For instance, local chart variables in function scope map to VHDL variables
in process scope. In VHDL, variable assignment is sequential. Therefore,
statements in a Stateflow function that uses local variables can safely map to
statements in a VHDL process that uses corresponding variables. The VHDL
assignments execute in the same order as the assignments in the Stateflow
function. The execution sequence is automatically correct.
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Restrictions for HDL Realization
Some restrictions on chart usage are required to achieve a valid mapping
from a chart to HDL code. These are summarized briefly in “A Quick Guide
to Requirements for Stateflow® HDL Code Generation” on page 9-4. The
following sections give a more detailed rationale for most of these restrictions.

Self-Contained Charts
The Stateflow C target allows generated code to have some dependencies
on code or data that is external to the chart. Stateflow charts intended for
HDL code generation, however, must be self-contained. Observe the following
rules for creating self-contained charts:

• Do not use C math functions such as sin and pow. There is no HDL
counterpart to the C math library.

• Do not use calls to functions coded in M or any language other than HDL.
For example, do not call M functions for a simulation target, as in the
following statement:

ml.disp( hello )

• Do not use custom code. There is no mechanism for embedding external
HDL code into generated HDL code. Custom C code (user-written C code
intended for linkage with C code generated from a Stateflow chart) is
ignored during HDL code generation.

See also Chapter 8, “Interfacing Subsystems and Models to HDL Code”.

• Do not use pointer (&) or indirection (*) operators. Pointer and indirection
operators have no function in a chart in the absence of custom code. Also,
pointer and indirection operators do not map directly to synthesizable HDL.

• Do not share data (via machine-parented data or Data Store Memory
blocks) between charts. The coder does not map such global data to HDL,
because HDL does not support global data.

Charts Must Not Use Features Unsupported by HDL
When creating charts intended for HDL code generation, follow these
guidelines to avoid using Stateflow features that cannot be mapped to HDL:
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• Avoid recursion. While charts permit recursion (through both event
processing and user-written recursive graphical functions), HDL does not
allow recursion.

• Do not use Stateflow machine-parented and local events. These event types
do not have equivalents in HDL. Therefore, these event types are not
supported for HDL code generation.

• Avoid unstructured code. Although charts allow unstructured code to be
written (through transition flow diagrams and graphical functions), this
usage results in goto statements and multiple function return statements.
HDL does not support either goto statements or multiple function return
statements.

• Select the Execute (enter) Chart At Initialization chart property. This
option executes the update chart function immediately following chart
initialization. The option is needed for HDL because outputs must be
available at time 0 (hardware reset). You must select this option to ensure
bit-true HDL code generation.
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Using Mealy and Moore Machine Types in HDL Code
Generation

In this section...

“Overview” on page 9-15

“Generating HDL for a Mealy Finite State Machine” on page 9-16

“Generating HDL Code for a Moore Finite State Machine” on page 9-19

Overview
Stateflow® charts support modeling of three types of state machines:

• Classic (default)

• Mealy

• Moore

This section discusses issues you should consider when generating HDL code
for Mealy and Moore state machines. See “Building Mealy and Moore Charts”
for detailed information on Mealy and Moore state machines.

Mealy and Moore state machines differ in the following ways:

• The outputs of a Mealy state machine are a function of the current state
and inputs.

• The outputs of a Moore state machine are a function of the current state
only.

Moore and Mealy state charts can be functionally equivalent; an equivalent
Mealy chart can derive from a Moore chart, and vice versa. A Mealy state
machine has a richer description and usually requires a smaller number of
states.

The principal advantages of using Mealy or Moore charts as an alternative
to Classic charts are:
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• At compile time, Mealy and Moore charts are validated to ensure that they
conform to their formal definitions and semantic rules, and violations are
reported.

• Moore charts generate more efficient code than Classic charts, for both
C and HDL targets.

The execution of a Mealy or Moore chart at time t is the evaluation of the
function represented by that chart at time t. The initialization property for
output ensures that every output is defined at every time step. Specifically,
the output of a Mealy or Moore chart at one time step must not depend on the
output of the chart at an earlier time step.

Consider the outputs of a chart. Stateflow charts permit output latching. That
is, the value of an output computed at time t persists until time t+d, when it
is overwritten. The output latching feature corresponds to registered outputs.
Therefore, Mealy and Moore charts intended for HDL code generation should
not use registered outputs.

Generating HDL for a Mealy Finite State Machine
When generating HDL code for a chart that models a Mealy state machine,
make sure that

• The chart meets all general code generation requirements, as described in
“A Quick Guide to Requirements for Stateflow® HDL Code Generation”
on page 9-4.

• The Initialize Outputs Every Time Chart Wakes Up option is selected.
This option is selected automatically when the Mealy option is selected from
the State Machine Type pop-up menu, as shown in the following figure.
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• Actions are associated with transitions inner and outer transitions only.

Mealy actions are associated with transitions. In Mealy machines, output
computation is expected to be driven by the change on inputs. In fact,
the dependence of output on input is the fundamental distinguishing
factor between the formal definitions of Mealy and Moore machines. The
requirement that actions be given on transitions is to some degree stylistic,
rather than necessary to enforce Mealy semantics. However, it is natural that
output computation follows input conditions on input, because transition
conditions are primarily input conditions in any machine type.

The following figure shows an example of a chart that models a Mealy state
machine.
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The following code example lists the VHDL process code generated for the
Mealy chart.

Chart : PROCESS (is_Chart, coin)

-- local variables

BEGIN

is_Chart_next <= is_Chart;

coke <= '0';

CASE is_Chart IS

WHEN IN_got_0 =>

IF coin = 1.0 THEN

coke <= '0';
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is_Chart_next <= IN_got_N;

ELSIF coin = 2.0 THEN

coke <= '0';

is_Chart_next <= IN_got_D;

END IF;

WHEN IN_got_D =>

IF coin = 2.0 THEN

coke <= '1';

is_Chart_next <= IN_got_N;

ELSIF coin = 1.0 THEN

coke <= '1';

is_Chart_next <= IN_got_0;

END IF;

WHEN IN_got_N =>

IF coin = 1.0 THEN

coke <= '0';

is_Chart_next <= IN_got_D;

END IF;

WHEN OTHERS =>

is_Chart_next <= IN_got_0;

END CASE;

END PROCESS Chart;

Generating HDL Code for a Moore Finite State
Machine
When generating HDL code for a chart that models a Moore state machine,
make sure that

• The chart meets all general code generation requirements, as described in
“A Quick Guide to Requirements for Stateflow® HDL Code Generation”
on page 9-4.
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• The Initialize Outputs Every Time Chart Wakes Up option is selected.
This option is selected automatically when the Moore option is selected from
the State Machine Type pop-up menu, as shown in the following figure.

• Actions occur in states only. These actions are unlabeled, and execute when
exiting the states or remaining in the states.

Moore actions must be associated with states, because output computation
must be dependent only on states, not input. Therefore, the current
configuration of active states at time step t determines output. Thus, the
single action in a Moore state serves as both during and exit action. If
state S is active when a chart wakes up at time t, it contributes to the
output whether it remains active into time t+1 or not.

• No local data or graphical functions are used.
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Function calls and local data are not allowed in a Moore chart. This ensures
that output does not depend on input in ways that would be difficult for
the HDL code generator to verify. These restrictions strongly encourage
coding practices that separate output and input.

• No references to input occur outside of transition conditions.

• Output computation occurs only in leaf states.

This restriction guarantees that the chart’s top-down semantics compute
outputs as if actions were evaluated strictly before inner and outer flow
diagrams.

The following figure shows a Stateflow chart of a Moore state machine.

The following code example illustrates generated Verilog code for the Moore
chart.
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Chart : PROCESS (is_Chart, w)

-- local variables

VARIABLE is_Chart_temp : T_state_type_is_Chart;

BEGIN

is_Chart_temp := is_Chart;

z <= '0';

CASE is_Chart_temp IS

WHEN IN_A =>

z <= '0';

WHEN IN_B =>

z <= '0';

WHEN IN_C =>

z <= '1';

WHEN OTHERS =>

is_Chart_temp := IN_NO_ACTIVE_CHILD;

END CASE;

CASE is_Chart_temp IS

WHEN IN_A =>

IF w = '1' THEN

is_Chart_temp := IN_B;

END IF;

WHEN IN_B =>

IF w = '1' THEN

is_Chart_temp := IN_C;

ELSIF w = '0' THEN

is_Chart_temp := IN_A;

END IF;

WHEN IN_C =>

IF w = '0' THEN

is_Chart_temp := IN_A;

END IF;
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WHEN OTHERS =>

is_Chart_temp := IN_A;

END CASE;

is_Chart_next <= is_Chart_temp;

END PROCESS Chart;
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Structuring a Model for HDL Code Generation
In general, generation of VHDL or Verilog code from a model containing a
Stateflow® chart does not differ greatly from HDL code generation from any
other model.

A chart intended for HDL code generation must be part of a subsystem that
represents the Device Under Test (DUT). The DUT corresponds to the top
level VHDL entity or Verilog module for which code is generated, tested and
eventually synthesized. The top level Simulink® components that drive the
DUT correspond to the behavioral test bench.

You may need to restructure your models to meet this requirement. If the
chart for which you want to generate code is at the root level of your model,
embed the chart in a subsystem and connect the appropriate signals to the
subsystem inputs and outputs. In most cases, you can do this by simply
clicking on the chart and then selecting Edit > Create Subsystem in the
model window.

As an example of a properly structured model, consider the fan_control
model shown in the following figure. In this model, the subsystem SFControl
is the DUT. Two input signals drive the DUT.
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The SFControl subsystem, shown in the following figure, contains a Stateflow
chart, Fan Controller. The chart that has two inputs and an output.
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The Fan Controller chart, shown in the following figure, models a simple
system that monitors input temperature data (temp) and turns on the two
fans (FAN1 and FAN2) based on the range of the temperature. A manual
override input (switch) is provided to turn the fans off forcibly. At each time
step the Fan Controller outputs a value (airflow) representing the number
of fans that are turned on.
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The following makehdl command generates VHDL code (by default) for the
subsystem containing the chart.

makehdl(`fan_control/SF_Control')

As code generation for this subsystem proceeds, the coder displays progress
messages as shown in the following listing:

### Begin VHDL Code Generation

### Working on fan_control/SFControl as hdlsrc\SFControl.vhd
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### Working on fan_control/SFControl/Fan Controller as hdlsrc\Fan_Controller.vhd

Stateflow parsing for model "fan_control"...Done

Stateflow code generation for model "fan_control"....Done

### HDL Code Generation Complete.

As the progress messages indicate, the coder generates a separate code file for
each level of hierarchy in the model. The following VHDL files are written to
the target directory, hdlsrc:

• Fan_Controller.vhd contains the entity and architecture code
(Fan_Controller) for the chart.

• SFControl.vhd contains the code for the top level subsystem. This file also
instantiates a Fan_Controller component.

The coder also generates a number of other files (such as scripts for HDL
simulation and synthesis tools) in the target directory. See the “HDL Code
Generation Defaults” on page 14-18 for full details on generated files.

The following code excerpt shows the entity declaration generated for the
Fan_Controller chart inFan_Controller.vhd.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

ENTITY Fan_Controller IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

temp : IN std_logic_vector(11 DOWNTO 0);

b_switch : IN std_logic_vector(1 DOWNTO 0);

airflow : OUT std_logic_vector(15 DOWNTO 0));

END Fan_Controller;

This model shows the use of fixed point data types without scaling
(e.g. ufix12, sfix2) , as supported for HDL code generation. At the
entity/instantiation boundary, all signals in the generated code are typed as
std_logic or std_logic_vector, following general VHDL coding standard
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conventions. In the architecture body, these signals are assigned to the
corresponding typed signals for further manipulation and access.
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Design Patterns Using Advanced Chart Features

In this section...

“Temporal Logic” on page 9-30

“Graphical Function” on page 9-33

“Hierarchy and Parallelism” on page 9-35

“Stateless Charts” on page 9-39

“Truth Tables” on page 9-42

Temporal Logic
Stateflow® temporal logic operators (such as after, before, or every) are
Boolean operators that operate on recurrence counts of Stateflow events.
Temporal logic operators can appear only in conditions on transitions that
from states, and in state actions. Although temporal logic does not introduce
any new events into a Stateflow model, it is useful to think of the change of
value of a temporal logic condition as an event. You can use temporal logic
operators in many cases where a counter is required. A common use case
would be to use temporal logic to implement a time-out counter.

For detailed information about temporal logic, see “Using Temporal Logic
in State Actions and Transitions”.

The chart shown in the following figure uses temporal logic in a design for a
debouncer. Instead of instantaneously switching between on and off states,
the chart uses two intermediate states and temporal logic to ignore transients.
The transition is committed based on a time-out.
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The following code excerpt shows VHDL code generated from this chart.

Chart : PROCESS (is_Chart, temporalCounter_i1, y_reg, u)

-- local variables

VARIABLE temporalCounter_i1_temp : unsigned(7 DOWNTO 0);

BEGIN

is_Chart_next <= is_Chart;

y_reg_next <= y_reg;

temporalCounter_i1_temp := temporalCounter_i1;

IF temporalCounter_i1_temp < to_unsigned(7, 8) THEN

temporalCounter_i1_temp :=

tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(temporalCounter_i1_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);
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END IF;

CASE is_Chart IS

WHEN IN_tran1 =>

IF u = '1' THEN

is_Chart_next <= IN_on;

y_reg_next <= '1';

ELSIF temporalCounter_i1_temp >= to_unsigned(3, 8) THEN

is_Chart_next <= IN_off;

y_reg_next <= '0';

END IF;

WHEN IN_tran2 =>

IF temporalCounter_i1_temp >= to_unsigned(5, 8) THEN

is_Chart_next <= IN_on;

y_reg_next <= '1';

ELSIF u = '0' THEN

is_Chart_next <= IN_off;

y_reg_next <= '0';

END IF;

WHEN IN_off =>

IF u = '1' THEN

is_Chart_next <= IN_tran2;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN IN_on =>

IF u = '0' THEN

is_Chart_next <= IN_tran1;

temporalCounter_i1_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

is_Chart_next <= IN_on;
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y_reg_next <= '1';

END CASE;

temporalCounter_i1_next <= temporalCounter_i1_temp;

END PROCESS Chart;

Graphical Function
A graphical function is a function defined graphically by a flow diagram.
Graphical functions reside in a chart along with the diagrams that invoke
them. Like MATLAB® functions and C functions, graphical functions can
accept arguments and return results. Graphical functions can be invoked in
transition and state actions.

The “Stateflow Chart Notation” chapter of the Stateflow documentation
includes a detailed description of graphical functions.

The following figure shows a graphical function that implements a 64–by–64
counter.
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The following code excerpt shows VHDL code generated for this graphical
function.

x64_counter_sf : PROCESS (x, y, outx_reg, outy_reg)

-- local variables

VARIABLE x_temp : unsigned(7 DOWNTO 0);

VARIABLE y_temp : unsigned(7 DOWNTO 0);

BEGIN

outx_reg_next <= outx_reg;

outy_reg_next <= outy_reg;

x_temp := x;

y_temp := y;

x_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(x_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF x_temp < to_unsigned(64, 8) THEN
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NULL;

ELSE

x_temp := to_unsigned(0, 8);

y_temp := tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(y_temp, 9), 10)

+ tmw_to_unsigned(to_unsigned(1, 9), 10), 8);

IF y_temp < to_unsigned(64, 8) THEN

NULL;

ELSE

y_temp := to_unsigned(0, 8);

END IF;

END IF;

outx_reg_next <= x_temp;

outy_reg_next <= y_temp;

x_next <= x_temp;

y_next <= y_temp;

END PROCESS x64_counter_sf;

Hierarchy and Parallelism
Stateflow charts support both hierarchy (states containing other states) and
parallelism (multiple states that can be active simultaneously).

In Stateflow semantics, parallelism is not synonymous with concurrency.
Parallel states can be active simultaneously, but they are executed
sequentially according to their execution order. (Execution order is displayed
on the upper right corner of a parallel state).

For detailed information on hierarchy and parallelism, see “Stateflow
Hierarchy of Objects” and “Execution Order for Parallel States”.

For HDL code generation, an entire chart maps to a single output computation
process. Within the output computation process:

• The execution of parallel states proceeds sequentially.

• Nested hierarchical states map to nested CASE statements in the generated
HDL code.
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The following figure shows a chart that models a security system. The chart
contains

• Simultaneously active parallel states (in order of execution: Door, Motion,
Win, Alarm).

• Hierarchy, where the parallel states contain child states. For example,
the Motion state contains Active and Inactive states, and the Active state
contains further nested states (Debouncing and Idle).

• Graphical functions (such as send_alert and send_warn) that set and
reset flags, simulating broadcast and reception of events. These functions
are used, rather than local events, because local events are not supported
for HDL code generation.
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The following VHDL code excerpt was generated for the parallel Door
and Motion states from this chart. The higher-level CASE statements
corresponding to Door and Motion are generated sequentially to match
Stateflow simulation semantics. The hierarchy of nested states maps to
nested CASE statements in VHDL.

CASE is_Door IS

WHEN IN_Active =>

IF D_mode = '0' THEN

is_Door_next <= IN_Disabled;

ELSIF tmw_to_boolean(Door_sens AND tmw_to_stdlogic(is_On = IN_Idle)) THEN
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alert_temp := '1';

END IF;

WHEN IN_Disabled =>

IF D_mode = '1' THEN

is_Door_next <= IN_Active;

ELSIF tmw_to_boolean(Door_sens) THEN

warn_temp := '1';

END IF;

WHEN OTHERS =>

--On the first sample call the door mode is set to active.

is_Door_next <= IN_Active;

END CASE;

--This state models the modes of a motion detector sensor and implements logic

-- to respond when that sensor is producing a signal.

CASE is_Motion IS

WHEN IN_Active =>

IF M_mode = '0' THEN

is_Active_next <= IN_NO_ACTIVE_CHILD;

is_Motion_next <= IN_Disabled;

ELSE

CASE is_Active IS

WHEN IN_Debouncing =>

IF tmw_to_boolean(('1'

AND tmw_to_stdlogic(temporalCounter_i2_temp >=

to_unsigned(1, 8)))

AND tmw_to_stdlogic(is_On = IN_Idle))

THEN

alert_temp := '1';

is_Active_next <= IN_Debouncing;

temporalCounter_i2_temp := to_unsigned(0, 8);

ELSIF tmw_to_boolean( NOT Mot_sens) THEN

is_Active_next <= b_IN_Idle;
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END IF;

WHEN b_IN_Idle =>

IF tmw_to_boolean(Mot_sens) THEN

is_Active_next <= IN_Debouncing;

temporalCounter_i2_temp := to_unsigned(0, 8);

END IF;

WHEN OTHERS =>

NULL;

END CASE;

Stateless Charts
Charts consisting of pure flow diagrams (i.e., charts having no states
) are useful in capturing if-then-else constructs used in procedural
languages like C. The “Stateflow Chart Notation” chapter in the Stateflow
documentation discusses flow diagrams in detail.

As an example, consider the following logic, expressed in C-like pseudocode.

if(U1==1) {
if(U2==1) {

Y = 1;
}else{

Y = 2;
}

}else{
if(U2<2) {

Y = 3;
}else{

Y = 4;
}

}

The following figures illustrate how to model this control flow using a
stateless chart. The root model contains a subsystem and inputs and outputs
to the chart.
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The following figure shows the flow diagram that implements the
if-then-else logic.

The following generated VHDL code excerpt shows the nested IF-ELSE
statements obtained from the flow diagram.

Chart : PROCESS (Y1_reg, Y2_reg, U1, U2)

-- local variables

BEGIN

Y1_reg_next <= Y1_reg;

Y2_reg_next <= Y2_reg;

IF unsigned(U1) = to_unsigned(1, 8) THEN

IF unsigned(U2) = to_unsigned(1, 8) THEN

Y1_reg_next <= to_unsigned(1, 8);

ELSE

Y1_reg_next <= to_unsigned(2, 8);

END IF;
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ELSIF unsigned(U2) < to_unsigned(2, 8) THEN

Y1_reg_next <= to_unsigned(3, 8);

ELSE

Y1_reg_next <= to_unsigned(4, 8);

END IF;

Y2_reg_next <= tmw_to_unsigned(tmw_to_unsigned(tmw_to_unsigned(unsigned(U1), 9),10)

+ tmw_to_unsigned(tmw_to_unsigned(unsigned(U2), 9), 10), 8);

END PROCESS Chart;

Truth Tables
Truth Table functions (see “Truth Table Functions”) are well-suited for
implementing compact combinatorial logic. A typical application for Truth
Tables is to implement nonlinear quantization or threshold logic. Consider
the following logic:

Y = 1 when 0 <= U <= 10
Y = 2 when 10 < U <= 17
Y = 3 when 17 < U <= 45
Y = 4 when 45 < U <= 52
Y = 5 when 52 < U

A stateless chart with a single call to a Truth Table function can represent
this logic succinctly.

The following figure shows a model containing a subsystem, DUT.
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The subsystem contains a chart, quantizer, as shown in the following figure.
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The next figure shows the quantizer chart, containing the Truth Table.
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The following figure shows the threshold logic, as displayed in the Truth
Table Editor.
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The following code excerpt shows VHDL code generated for the quantizer
chart.

quantizer : PROCESS (Y_reg, U)

-- local variables

VARIABLE aVarTruthTableCondition_1 : std_logic;

VARIABLE aVarTruthTableCondition_2 : std_logic;

VARIABLE aVarTruthTableCondition_3 : std_logic;

VARIABLE aVarTruthTableCondition_4 : std_logic;

BEGIN

Y_reg_next <= Y_reg;

-- Condition #1

aVarTruthTableCondition_1 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(10, 8));

-- Condition #2

aVarTruthTableCondition_2 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(17, 8));

-- Condition #3

aVarTruthTableCondition_3 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(45, 8));

-- Condition #4

aVarTruthTableCondition_4 := tmw_to_stdlogic(unsigned(U) <= to_unsigned(52, 8));

IF tmw_to_boolean(aVarTruthTableCondition_1) THEN

-- D1

-- Action 1

Y_reg_next <= to_unsigned(1, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_2) THEN

-- D2

-- Action 2

Y_reg_next <= to_unsigned(2, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_3) THEN

-- D3

-- Action 3

Y_reg_next <= to_unsigned(3, 8);

ELSIF tmw_to_boolean(aVarTruthTableCondition_4) THEN

-- D4

-- Action 4

Y_reg_next <= to_unsigned(4, 8);

ELSE

-- Default

-- Action 5

Y_reg_next <= to_unsigned(5, 8);
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END IF;

END PROCESS quantizer;
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Introduction

In this section...

“HDL Applications for the Embedded MATLAB™ Function Block” on page
10-3

“Related Documentation and Demos” on page 10-4

HDL Applications for the Embedded MATLAB™
Function Block
The Embedded MATLAB™ Function block contains a MATLAB® function in
a model. The function’s inputs and outputs are represented by ports on the
block, which allow you to interface your model to the function code. When you
generate HDL code for an Embedded MATLAB Function block, the coder
generates two main HDL code files:

• A file containing entity and architecture code that implement the actual
algorithm or computations generated for the Embedded MATLAB Function
block.

• A file containing an entity definition and RTL architecture that provide a
black box interface to the algorithmic code generated for the Embedded
MATLAB Function block.

The structure of these code files is analogous to the structure of the model,
in which a subsystem provides an interface between the root model and the
function in the Embedded MATLAB Function block.

The Embedded MATLAB Function block supports a powerful subset of the
MATLAB language that is well-suited to HDL implementation of various DSP
and telecommunications algorithms, such as:

• Sequence and pattern generators

• Encoders and decoders

• Interleavers and deinterleaver

• Modulators and demodulators
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• Multipath channel models; impairment models

• Timing recovery algorithms

• Viterbi algorithm; Maximum Likelihood Sequence Estimation (MLSE)

• Adaptive equalizer algorithms

Related Documentation and Demos
The following documentation and demos provide further information on the
Embedded MATLAB Function block.

Related Documentation
For general documentation on the Embedded MATLAB Function block, see:

• “Using the Embedded MATLAB Function Block”

• Embedded MATLAB Function block reference

The coder supports most of the fixed-point runtime library functions
supported by the Embedded MATLAB Function block. See “Working with
the Fixed-Point Embedded MATLAB Subset” in the Fixed-Point Toolbox™
documentation for a complete list of these functions, and general information
on limitations that apply to the use of Fixed-Point Toolbox with the Embedded
MATLAB function block.

Demos
The hdlcoderviterbi2.mdl demo models a Viterbi decoder, incorporating an
Embedded MATLAB Function block for use in simulation and HDL code
generation. To open the model, type the following command at the MATLAB
command line:

hdlcoderviterbi2

The hdlcodercpu_eml.mdl demo models a CPU with a Harvard RISC
architecture, incorporating many Embedded MATLAB Function blocks to
simulate and generate code for CPU and memory elements. To open the
model, type the following command at the MATLAB command line:

hdlcodercpu_eml
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Tutorial Example: Incrementer

In this section...

“Example Model Overview” on page 10-5

“Setting Up” on page 10-8

“Creating the Model and Configuring General Model Settings” on page 10-9

“Adding an Embedded MATLAB™ Function Block to the Model” on page
10-9

“Setting Optimal Fixed Point Options for the Embedded MATLAB™
Function Block” on page 10-11

“Programming the Embedded MATLAB™ Function Block” on page 10-13

“Constructing and Connecting the DUT_eML_Block Subsystem” on page
10-16

“Compiling the Model and Displaying Port Data Types” on page 10-21

“Simulating the eml_hdl_incrementer Model” on page 10-22

“Generating HDL Code” on page 10-23

Example Model Overview
In this tutorial, you construct and configure a simple model,
eml_hdl_incrementer, and then generate VHDL code from the model.
eml_hdl_incrementer includes an Embedded MATLAB™ Function block
that implements a simple fixed-point counter function, incrementer. The
incrementer function is invoked once during each sample period of the
model. The function maintains a persistent variable count, which is either
incremented or reinitialized to a preset value (ctr_preset_val), depending
on the value passed in to the ctr_preset input of the Embedded MATLAB
Function block . The function returns the counter value (counter) at the
output of the Embedded MATLAB Function block.

The Embedded MATLAB Function block is contained in a subsystem,
DUT_eML_Block . The subsystem functions as the device under test (DUT)
from which HDL code is generated. The following figure shows the subsystem.
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The root-level model drives the subsystem and includes Display and To
Workspace blocks for use in simulation. (The Display and To Workspace
blocks do not generate any HDL code.) The following figure shows the model.
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Tip If you do not want to construct the model step by step, or do not have time,
the example model is available in the demos directory as the following file:

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\eml_hdl_incrementer.mdl

The Incrementer Function Code
The following code listing gives the complete incrementer function definition:

function counter = incrementer(ctr_preset, ctr_preset_val)

% The function incrementer implements a preset counter that counts

% how many times this block is called.

%

% This example function shows how to model memory with persistent variables,

% using fimath settings suitable for HDL. It also demonstrates MATLAB

% operators and other language features supported

% for HDL code generation from Embedded MATLAB Function blocks.

%

% On the first call, the result 'counter' is initialized to zero.

% The result 'counter' saturates if called more than 2^14-1 times.

% If the input ctr_preset receives a nonzero value, the counter is

% set to a preset value passed in to the ctr_preset_val input.

persistent current_count;

if isempty(current_count)

% zero the counter on first call only

current_count = uint32(0);

end

counter = getfi(current_count);

if ctr_preset

% set counter to preset value if input preset signal is nonzero

counter = ctr_preset_val;

else

% otherwise count up
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inc = counter + getfi(1);

counter = getfi(inc);

end

% store counter value for next iteration

current_count = uint32(counter);

function hdl_fi = getfi(val)

nt = numerictype(0,14,0);

fm = fimath('OverflowMode', wrap, ...

'RoundMode', 'floor', ...

'ProductMode', 'FullPrecision', ...

'ProductWordLength', 32,...

'SumMode', 'FullPrecision', ...

'SumWordLength', 32);

hdl_fi = fi(val, nt, fm);

Setting Up
Before you begin building the example model, set up a working directory
and (if necessary), build an HDL supported blocks library, as described in
the following sections.

Setting Up a Directory

1 Start the MATLAB® software.

2 Create a directory named eml_tut, for example:

mkdir D:\work\eml_tut

The eml_tut directory stores the model you create, and also contains
directories and generated code. The location of the directory does not
matter, except that it should not be within the MATLAB directory tree.

3 Make the eml_tut directory your working directory, for example:

cd D:\work\eml_tut
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Creating the Model and Configuring General Model
Settings
In this section, you create a model and set some parameters to values
recommended for HDL code generation, using the M-file utility, hdlsetup.m.
The hdlsetup command uses the set_param function to set up models for HDL
code generation quickly and consistently. See “Initializing Model Parameters
with hdlsetup” on page 2-8 for further information about hdlsetup.

To set the model parameters:

1 Create a new model.

2 Save the model as eml_hdl_incrementer.mdl.

3 At the MATLAB command prompt, type:

hdlsetup('eml_hdl_incrementer')

4 Select Configuration Parameters from the Simulation menu in the
eml_hdl_incrementer model window.

The Configuration Parameters dialog box opens with the Solver options
pane displayed.

5 Set the following Solver options, which are useful in simulating this model:

Fixed step size : 1.

Stop time : 5.

6 Click Apply. Then close the Configuration Parameters dialog box.1.

7 Select Save from the Simulink® File menu, to save the model with its
new settings.

Adding an Embedded MATLAB™ Function Block to
the Model

1 Open the Simulink Library Browser. Then, select the
Simulink/User-Defined Functions sublibrary.
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2 Select the Embedded MATLAB Function block from the library window
and add it to the model.

The model should now appear as shown on the following figure:

3 Change the block label from Embedded MATLAB Function to
eml_inc_block.

The model should now appear as shown on the following figure:
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4 Save the model.

5 Close the hdlsupported library window.

Setting Optimal Fixed Point Options for the
Embedded MATLAB™ Function Block
This section describes how to set up the FIMATH specification and other fixed
point options that are recommended for efficient HDL code generation from
the Embedded MATLAB Function block. The recommended settings are

• ProductMode property of the FIMATH specification: 'FullPrecision'

• SumMode property of the FIMATH specification: 'FullPrecision'

• Treat these inherited signal types as fi objects option: Fixed-point
(This is the default setting.)

Configure the options as follows:

1 If it is not already open, open the eml_hdl_incrementer model that you
created in “Adding an Embedded MATLAB™ Function Block to the Model”
on page 10-9.

2 Double-click the Embedded MATLAB Function block to open it for editing.
The Embedded MATLAB Function block editor appears.

3 Select Edit Data/Ports from the Tools menu. The Ports and Data Manager
dialog box opens, displaying the default FIMATH specification and other
properties for the Embedded MATLAB Function block.
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4 The M-function hdlfimath.m is a utility that defines a FIMATH
specification that is optimized for HDL code generation. Replace the
default FIMATH for fixed-point signals specification with a call to
hdlfimath as follows:

hdlfimath;

5 Click Apply. The Embedded MATLAB Function block properties should
now appear as shown in the following figure.
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6 Close the Ports and Data Manager dialog box.

7 Save the model.

Programming the Embedded MATLAB™ Function
Block
The next step is add code to the Embedded MATLAB Function block to define
the incrementer function, and then use diagnostics to check for errors.

Use the following steps to program the function:

1 If not already open, open the eml_hdl_incrementer model that you created
in “Adding an Embedded MATLAB™ Function Block to the Model” on page
10-9.
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2 Double-click the Embedded MATLAB Function block to open it for editing.
The Embedded MATLAB Function block editor appears. The editor
displays a default function definition, as shown in the following figure.

The next step is to replace the replace the default function with the
incrementer function.

3 Click Select All in the Edit menu of the Embedded MATLAB Function
block editor window. Then, delete all the default code.

4 Copy the complete incrementer function definition from the listing given in
“The Incrementer Function Code” on page 10-7, and paste it into the editor.

The Embedded MATLAB function block editor should appear as shown in
the following figure:
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5 Select Save Model from the File menu in the Embedded MATLAB
Function block editor.
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Saving the model updates the model window, redrawing the Embedded
MATLAB Function block.

Changing the function header of the Embedded MATLAB Function block
makes the following changes to the Embedded MATLAB Function block
in the model:

• The function name in the middle of the block changes to incrementer

• The arguments ctr_preset and ctr_preset_val appear as input ports
to the block.

• The return value counter appears as an output port from the block.

6 Resize the block to make the port labels more legible. The model should
now resemble the following figure.

7 Save the model again.

Constructing and Connecting the DUT_eML_Block
Subsystem
This section assumes that you have completed “Programming the Embedded
MATLAB™ Function Block” on page 10-13 with a successful build. In this
section, you construct a subsystem containing the incrementer function block,
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to be used as the device under test (DUT) from which HDL code is generated.
You then set the port data types and connect the subsystem ports to the model.

Constructing the DUT_eML_Block Subsystem
Construct a subsystem containing the incrementer function block as follows:

1 Click on the incrementer function block.

2 From the Edit menu, select Create Subsystem.

A subsystem, labeled Subsystem, is created in the model window.

3 Change the Subsystem label to DUT_eML_Block.

Setting Port Data Types for the Embedded MATLAB™ Function
Block

1 Double-click the subsystem to view its interior. As shown in the following
figure, the subsystem contains the incrementer function block, with input
and output ports connected.
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2 Double-click the incrementer function block, to open the Embedded
MATLAB Function block editor. In the editor window, select Edit Data
Ports from the Tools menu. The Ports and Data Manager dialog box opens.

3 Select the ctr_preset entry in the port list on the left. Set the Data type
mode property for this port to Built-in. Set the Data type property
to boolean. Click Apply.

4 Select the ctr_preset_val entry in the port list on the left. Set the Data
type mode property for this port to Fixed point. Set the Word length
property to 14. Click Apply.

5 Select the counter entry in the port list on the left. Verify that the Data
type mode property for this port is set to Inherit: Same as Simulink.
Click Apply.

The Ports and Data Manager dialog box should now appear as shown in
the following figure.
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6 Close the Ports and Data Manager dialog box and the editor.

7 Save the model and close the DUT_eML_Block subsystem.

Connecting Subsystem Ports to the Model
Next, connect the ports of the DUT_eML_Block subsystem to the model as
follows:

1 From the Sources library, add a Constant block to the model. Set the value
of the Constant to 1, and the Output data type mode to boolean. Change
the block label to Preset.

2 Make a copy of the Preset Constant block. Set its value to 0, and change
its block label to Increment.

3 Add a Switch block to the model. Change its label to Control. Connect its
output to the In1 port of the DUT_eML_Block subsystem.

4 From the Signal Routing library, add a Manual Switch block to the model.
Change its label to Control. Connect its output to the In1 port of the
DUT_eML_Block subsystem.

5 Connect the Preset Constant block to the upper input of the Control
switch block. Connect the Increment Constant block to the lower input of
the Control switch block.

6 Add a third Constant block to the model. Set the value of the Constant to
15, and the Output data type mode to Inherit via back propagation.
Change the block label to Preset Value.

Connect the Preset Value constant block to the In2 port of the
DUT_eML_Block subsystem.

7 From the Sinks library, add a Display block to the model. Connect it to the
Out1 port of the DUT_eML_Block subsystem.

8 From the Sinks library, add a To Workspace block to the model. Route the
output signal from the DUT_eML_Block subsystem to the To Workspace
block.

9 Save the model.
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Checking the Function for Errors
Use the built-in diagnostics of Embedded MATLAB Function blocks to test for
syntax errors with the following procedure:

1 If it is not already open, open the eml_hdl_incrementer model.

2 Double-click the Embedded MATLAB Function block incrementer to open
it for editing.

3 In the Embedded MATLAB Function block editor, select Build from the
Tools menu (or press CTRL+B) to compile and build the Embedded
MATLAB Function block code.

The build process displays some progress messages. These messages will
include some warnings, because the ports of the Embedded MATLAB Function
block are not yet connected to any signals. You can ignore these warnings.

The build process builds a C-MEX S-function for use in simulation. The build
process includes generation of C code for the S-function. The code generation
messages you see during the build process refer to generation of C code, not to
HDL code generation.

When the build concludes successfully, a message window is displayed.
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If errors are found, the Diagnostics Manager window lists them. See “Using
the Embedded MATLAB Function Block” for information on debugging
Embedded MATLAB Function block build errors.

Compiling the Model and Displaying Port Data Types
In this section you enable the display of port data types and then compile the
model. Model compilation verifies that the model structure and settings are
correct, and update the model display.

1 From the Simulink Format menu, selectPort/Signal Displays > Port
Data Types.

2 From the Simulink Edit menu, select Update Diagram (or press Ctrl+D)
to compile the model. This triggers a rebuild of the code. After the model
compiles, the block diagram updates to show the port data types. The
model should now appear as shown in the following figure.
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3 Save the model.

Simulating the eml_hdl_incrementer Model
Click the Start Simulation icon to run a simulation.

If necessary, the code rebuilds before the simulation starts.

After the simulation completes, the Display block shows the final output value
returned by the incrementer function block. For example, given a Start time
of 0, a Stop time of 5, and a zero value presented at the ctr_preset port, the
simulation returns a value of 6, as shown in the following figure.
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You may want to experiment with the results of toggling the Control switch,
changing the Preset Value constant, and changing the total simulation time.
You may also want to examine the workspace variable simout, which is bound
to the To Workspace block.

Generating HDL Code
In this section, you select the DUT_eML_Block subsystem for HDL code
generation, set basic code generation options, and then generate VHDL code
for the subsystem.

Selecting the Subsystem for Code Generation
Select the DUT_eML_Block subsystem for code generation, as follows:

1 Open the Configuration Parameters dialog box. Click the HDL Coder
category in the Select tree in the left pane of the dialog box.

2 Select eml_hdl_incrementer/DUT_eML_Block from the Generate HDL
for menu.

3 Click Apply. The dialog box should now appear as shown in the following
figure.
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Generating VHDL Code
The top-level HDL Coder options should now be set as follows:

• The Generate HDL for field specifies the
eml_hdl_incrementer/DUT_eML_Block subsystem for code generation.

• The Language field specifies (by default) generation of VHDL code.

• The Directory field specifies (by default) that the code generation target
directory is a subdirectory of your working directory, named hdlsrc.

Before generating code, select Current Directory from the Desktop menu
in the MATLAB window. This displays the Current Directory browser, which
lets you easily access your working directory and the files that are generated
within it.

To generate code:
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1 Click the Generate button.

The coder compiles the model before generating code. Depending on model
display options (for example, sample time colors, port data types, etc.), the
appearance of the model may change after code generation.

2 As code generation proceeds, the coder displays progress messages. The
process should complete successfully with the message

### Applying HDL Code Generation Control Statements

### Begin VHDL Code Generation

### Working on eml_hdl_incrementer/DUT_eML_Block as hdlsrc\DUT_eML_Block.vhd

### Working on eml_hdl_incrementer/DUT_eML_Block/eml_inc_blk as hdlsrc\eml_inc_blk.vhd

Embedded MATLAB parsing for model "eml_hdl_incrementer"...Done

Embedded MATLAB code generation for model "eml_hdl_incrementer"....Done

### HDL Code Generation Complete.

Observe that the names of generated VHDL files in the progress messages
are hyperlinked. After code generation completes, you can click these
hyperlinks to view the files in the MATLAB editor.

3 A folder icon for the hdlsrc directory is now visible in the Current
Directory browser. To view generated code and script files, double-click
the hdlsrc folder icon.

4 Observe that two VHDL files were generated. The structure of HDL
code generated for Embedded MATLAB Function blocks is similar to the
structure of code generated for Stateflow® charts and Digital Filter blocks.
The VHDL files that were generated in the hdlsrc directory are

• eml_inc_blk.vhd: VHDL code. This file contains entity and architecture
code implementing the actual computations generated for the Embedded
MATLAB Function block.

• DUT_eML_Block.vhd: VHDL code. This file contains an entity definition
and RTL architecture that provide a black box interface to the code
generated in Embedded_MATLAB_Function.vhd.

The structure of these code files is analogous to the structure of the model,
in which the DUT_eML_Block subsystem provides an interface between
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the root model and the incrementer function in the Embedded MATLAB
Function block.

The other files that were generated in the hdlsrc directory are

• DUT_eML_Block_compile.do: Mentor Graphics® ModelSim® compilation
script (vcom command) to compile the VHDL code in the two .vhd files.

• DUT_eML_Block_synplify.tcl: Synplify® synthesis script.

• DUT_eML_Block_map.txt: Mapping file. This report file maps generated
entities (or modules) to the subsystems that generated them (see “Code
Tracing Using the Mapping File” on page 7-6).

5 To view the generated VHDL code in the MATLAB editor, double-click
the DUT_eML_Block.vhd or eml_inc_blk.vhd file icons in the Current
Directory browser.

At this point you should study the ENTITY and ARCHITECTURE definitions
while referring to “HDL Code Generation Defaults” on page 14-18 in the
makehdl reference documentation. The reference documentation describes
the default naming conventions and correspondences between the elements
of a model (subsystems, ports, signals, etc.) and elements of generated
HDL code.
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Useful Embedded MATLAB™ Function Block Design
Patterns for HDL

In this section...

“The eml_hdl_design_patterns Library” on page 10-27

“Efficient Fixed-Point Algorithms” on page 10-29

“Using Persistent Variables to Model State” on page 10-33

“Creating Intellectual Property with the Embedded MATLAB™ Function
Block” on page 10-35

“Modeling Control Logic and Simple Finite State Machines” on page 10-36

“Modeling Counters” on page 10-38

“Modeling Hardware Elements” on page 10-39

The eml_hdl_design_patterns Library
The eml_hdl_design_patterns library is an extensive collection of examples
demonstrating useful applications of the Embedded MATLAB™ Function
block in HDL code generation. The following figure shows the library.
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The location of the library in the MATLAB® directory structure is

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\eml_hdl_design_patterns.mdl

Refer to example models in the eml_hdl_design_patterns library while
reading the following sections. To open the library, type the following
command at the MATLAB command prompt:

eml_hdl_design_patterns

You can use many blocks in the library as cookbook examples of various
hardware elements, as follows:
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• Copy a block from the library to your model and use it as a computational
unit, (generating code in a separate HDL file).

• Copy the code from the block and use it as a subfunction in an existing
Embedded MATLAB Function block (generating inline HDL code).

Efficient Fixed-Point Algorithms
The Embedded MATLAB Function block supports fixed point arithmetic
using the Fixed-Point Toolbox™ fi function. This function supports several
rounding and saturation modes that are useful for coding algorithms that
manipulate arbitrary word and fraction lengths. Supported rounding modes
are ceil, fix, floor, and nearest. Supported overflow modes are saturate
and wrap.

HDL code generated from the Embedded MATLAB Function block is bit-true
to MATLAB semantics. Generated code uses bit manipulation and bit access
operators (e.g., Slice, Extend, Reduce, Concat, etc.) that are native to VHDL
and Verilog.

The following discussion shows how HDL code generated from the Embedded
MATLAB Function block follows cast-before-sum semantics, in which addition
and subtraction operands are cast to the result type before the addition
or subtraction is performed.

Open the eml_hdl_design_patterns library and select the
Combinatrics/eml_expr block. eml_expr implements a simple expression
containing addition, subtraction, and multiplication operators with differing
fixed point data types. The generated HDL code shows the conversion of this
expression with fixed point operands. The following listing shows the code
embedded in the Embedded MATLAB Function block.

% fixpt arithmetic expression
expr = (a*b) - (a+b);

% cast the result to (sfix7_En4) output type
y = fi(expr, 1, 7, 4);

The default fimath specification for the block determines the behavior of
arithmetic expressions using fixed point operands inside the Embedded
MATLAB Function block:
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fimath(...
'RoundMode', 'ceil',...
'OverflowMode', 'saturate',...
'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...
'SumMode', 'FullPrecision', 'SumWordLength', 32,...
'CastBeforeSum', true)

The data types of operands and output are as follows:

• a: (sfix5_En2)

• b: (sfix5_En3)

• y: (sfix7_En4).

Before HDL Code generation, the operation

expr = (a*b) - (a+b);

is broken down internally into the following substeps:

1 tmul = a * b;

2 tadd = a + b;

3 tsub = tmul - tadd;

4 y = tsub;

Based on the fimath settings (see “Recommended Practices” on page 10-67)
this expression is further broken down internally as follows:

• Based on the specified ProductMode, 'FullPrecision', the output type of
tmul is computed as (sfix10_En5).

• Since the CastBeforeSum property is set to 'true', substep 2 is broken
down as follows:

t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;
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sfix7_En3 is the result sum type after aligning binary points and
accounting for an extra bit to account for possible overflow.

• Based on intermediate types of tmul (sfix10_En5) and tadd (sfix7_En3)
the result type of the subtraction in substep 3 is computed as sfix11_En5.
Accordingly, substep 3 is broken down as follows:

t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;

• Finally the result is cast to a smaller type (sfix7_En4) leading to the
following final expression statements:

tmul = a * b;
t1 = (sfix7_En3) a;
t2 = (sfix7_En3) b;
tadd = t1 + t2;
t3 = (sfix11_En5) tmul;
t4 = (sfix11_En5) tadd;
tsub = t3 - t4;
y = (sfix7_En4) tsub;

The following listings show the generated VHDL and Verilog code from the
eml_expr block.

VHDL code excerpt:

-- fixpt arithmetic expression

b_ain := resize(signed(a & '0'), 7);

b_bin := resize(signed(b), 7);

a_0 := signed(a) * signed(b);

ain := resize(a_0, 11);

b_ain_0 := b_ain + b_bin;

bin := resize(b_ain_0 & '0' & '0', 11);

ain_0 := resize(ain, 12);

bin_0 := resize(bin, 12);

ain_1 := ain_0 - bin_0;

IF (ain_1(11) = '0') AND (ain_1(10) /= '0') THEN

expr := "01111111111";
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ELSIF (ain_1(11) = '1') AND (ain_1(10) /= '1') THEN

expr := "10000000000";

ELSE

expr := ain_1(10 DOWNTO 0);

END IF;

-- cast the result to correct output type

IF ((expr(10) = '0') AND (expr(9 DOWNTO 7) /= "000")) OR ((expr(10) = '0')

AND (expr(7 DOWNTO 1) = "0111111")) THEN

y <= "0111111";

ELSIF (expr(10) = '1') AND (expr(9 DOWNTO 7) /= "111") THEN

y <= "1000000";

ELSE

y <= std_logic_vector(expr(7 DOWNTO 1) + ("0" & (expr(0))));

END IF;

Verilog code excerpt:

// fixpt arithmetic expression

b_ain = {a[4], {a, 1'b0}};

b_bin = b;

a_0 = a * b;

ain = a_0;

b_ain_0 = b_ain + b_bin;

bin = {{2{b_ain_0[6]}}, {b_ain_0, 2'b00}};

ain_0 = ain;

bin_0 = bin;

ain_1 = ain_0 - bin_0;

if ((ain_1[11] == 0) && (ain_1[10] != 0))

expr = 1023;

else if ((ain_1[11] == 1) && (ain_1[10] != 1))

expr = -1024;

else

expr = ain_1[10:0];

// cast the result to correct output type

if (((expr[10]== 0)&&(expr[9:7] != 0)) ||((expr[10] == 0) &&(expr[7:1] == 63)))
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y = 63;

else if ((expr[10] == 1) && (expr[9:7] != 7))

y = -64;

else

y = expr[7:1] + expr[0];

end

These code excerpts show that the generated HDL code from the Embedded
MATLAB Function block represents the bit-true behavior of fixed point
arithmetic expressions using high level HDL operators. The HDL code is
generated using HDL coding rules like high level bitselect and partselect
replication operators and explicit sign extension and resize operators.

Using Persistent Variables to Model State
To model sophisticated control logic, the ability to model registers is a basic
requirement. In the Embedded MATLAB Function block programming model,
state-holding elements are represented as persistent variables. A variable
that is declared persistent retains its value across function calls in software,
and across sample time steps during simulation. State-holding elements
in hardware also require this behavior. Similarly, state-holding elements
should retain their values across clock sample times. The values of persistent
variables can also be changed using global and local reset conditions.

The subsystem Delays in the eml_hdl_design_patterns library illustrates
how persistent variables can be used to simulate various kinds of delay blocks.

The unit delay block delays the input sample by one simulation time step.
A persistent variable is used to hold the value, as shown in the following
code listing:

function y = fcn(u)

persistent u_d;
if isempty(u_d)

u_d = fi(-1, numerictype(u), fimath(u));
end

% return delayed input from last sample time hit
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y = u_d;

% store the current input to be used later
u_d = u;

In this example, u is a fixed-point operand of type sfix6. In the generated
HDL code, initialization of persistent variables is moved into the master reset
region in the initialization process as follows.

ENTITY unit_delay IS
PORT (

clk : IN std_logic;
clk_enable : IN std_logic;
reset : IN std_logic;
u : IN std_logic_vector(5 DOWNTO 0);
y : OUT std_logic_vector(5 DOWNTO 0));

END unit_delay;

ARCHITECTURE fsm_SFHDL OF unit_delay IS

SIGNAL u_d : signed(5 DOWNTO 0);
SIGNAL u_d_next : signed(5 DOWNTO 0);

BEGIN
initialize_unit_delay : PROCESS (reset, clk)

-- local variables
BEGIN

IF reset = '1' THEN
u_d <= to_signed(-8, 6);

ELSIF clk'EVENT AND clk= '1' THEN
IF clk_enable= '1' THEN

u_d <= u_d_next;
END IF;

END IF;
END PROCESS initialize_unit_delay;

-- return delayed input from last sample time hit
y <= std_logic_vector(u_d);

-- store the current input to be used later

10-34



Useful Embedded MATLAB™ Function Block Design Patterns for HDL

u_d_next <= signed(u);

Refer to the Delays subsystem to see how vectors of persistent variables
can be used to model integer delay, tap delay, and tap delay vector blocks.
These design patterns are useful in implementing sequential algorithms that
carry state between invocations of the Embedded MATLAB Function block
in a model.

Creating Intellectual Property with the Embedded
MATLAB™ Function Block
The Embedded MATLAB Function block lets you quickly author intellectual
property (IP). It also lets you rapidly create alternate implementations of a
part of an algorithm.

For example, the subsystem Comparators in the eml_hdl_design_patterns
library includes several alternate algorithms for finding the minimum value
of a vector. The Comparators/eml_linear_min block finds the minimum of
the vector in a linear mode serially. The Comparators/eml_tree_min block
compares the elements in a tree structure. The tree implementation can
achieve a higher clock frequency by adding pipeline registers between the
log2(N) stages. (See eml_hdl_design_patterns/Filters for an example.)

Now consider replacing the simple comparison operation in the Comparators
blocks with an arithmetic operation (e.g., addition, subtraction, or
multiplication) where intermediate results must be quantized. Using fimath
rounding settings, you can fine tune intermediate value computations before
intermediate values feed into the next stage. This can be a powerful technique
for tuning the generated hardware or customizing your algorithm.

By using Embedded MATLAB Function blocks in this way, you can guide the
detailed operation of the HDL code generator even while writing high-level
algorithms.
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Modeling Control Logic and Simple Finite State
Machines
Embedded MATLAB Function block control constructs such as switch/case
and if-elseif-else, coupled with fixed point arithmetic operations let you
model control logic quickly.

The FSMs/mealy_fsm_blk andFSMs/moore_fsm_blk blocks in the
eml_hdl_design_patterns library provide example implementations of
Mealy and Moore finite state machines in the Embedded MATLAB Function
block.

The following listing implements a Moore state machine.

function Z = moore_fsm(A)

persistent moore_state_reg;

if isempty(moore_state_reg)

moore_state_reg = fi(0, 0, 2, 0);

end

S1 = 0;

S2 = 1;

S3 = 2;

S4 = 3;

switch uint8(moore_state_reg)

case S1,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S2;

end

case S2,

Z = false;

if (~A)

moore_state_reg(1) = S1;

else
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moore_state_reg(1) = S2;

end

case S3,

Z = false;

if (~A)

moore_state_reg(1) = S2;

else

moore_state_reg(1) = S3;

end

case S4,

Z = true;

if (~A)

moore_state_reg(1) = S1;

else

moore_state_reg(1) = S3;

end

otherwise,

Z = false;

end

In this example, a persistent variable (moore_state_reg) models state
variables. The output depends only on the state variables, thus modeling a
Moore machine.

The FSMs/mealy_fsm_blk block in the eml_hdl_design_patterns library
implements a Mealy state machine. A Mealy state machine differs from a
Moore state machine in that the outputs depend on inputs as well as state
variables.

The Embedded MATLAB Function block can quickly model simple state
machines and other control-based hardware algorithms (such as pattern
matchers or synchronization-related controllers) using control statements and
persistent variables.

For modeling more complex and hierarchical state machines with complicated
temporal logic, use a Stateflow® chart to model the state machine.
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Modeling Counters
To implement arithmetic and control logic algorithms in Embedded MATLAB
Function blocks intended for HDL code generation, there are some simple
HDL related coding requirements:

• The top level Embedded MATLAB Function block must be called once per
time step.

• It must be possible to fully unroll program loops.

• Persistent variables with proper reset values and update logic must be
used to hold values across simulation time steps.

• Quantized data variables must be used inside loops.

The following script shows how to model a synchronous up/down counter
with preset values and control inputs. The example provides both master
reset control of persistent state variables and local reset control using block
inputs (e.g. presetClear). The isempty condition enters the initialization
process under the control of a synchronous reset. The presetClear section is
implemented in the output section in the generated HDL code.

Both the up and down case statements implementing the count loop require
that the values of the counter are quantized after addition or subtraction. By
default, the Embedded MATLAB Function block automatically propagates
fixed-point settings specified for the block. In this script, however, fixed-point
settings for intermediate quantities and constants are explicitly specified.

function [Q, QN] = up_down_ctr(upDown, presetClear, loadData, presetData)

% up down result

% 'result' syntheses into sequential element

result_nt = numerictype(0,4,0);

result_fm = fimath('OverflowMode', 'saturate', 'RoundMode', 'floor');

initVal = fi(0, result_nt, result_fm);

persistent count;

if isempty(count)

count = initVal;
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end

if presetClear

count = initVal;

elseif loadData

count = presetData;

elseif upDown

inc = count + fi(1, result_nt, result_fm);

-- quantization of output

count = fi(inc, result_nt, result_fm);

else

dec = count - fi(1, result_nt, result_fm);

-- quantization of output

count = fi(dec, result_nt, result_fm);

end

Q = count;

QN = bitcmp(count);

Modeling Hardware Elements
The following code example shows how to model shift registers in
Embedded MATLAB Function block code by using the bitsliceget
and bitconcat function. This function implements a serial input and
output shifters with a 32–bit fixed-point operand input. See the Shift
Registers/shift_reg_1by32 block in the eml_hdl_design_patterns library
for more details.

function sr_out = fcn(shift, sr_in)

%shift register 1 by 32

persistent sr;

if isempty(sr)

sr = fi(0, 0, 32, 0, 'fimath', fimath(sr_in));

end

% return sr[31]

sr_out = getmsb(sr);

if (shift)
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% sr_new[32:1] = sr[31:1] & sr_in

sr = bitconcat(bitsliceget(sr, 31, 1), sr_in);

end

The following code example shows VHDL process code generated for the
shift_reg_1by32 block.

shift_reg_1by32 : PROCESS (sr, shift, sr_in)
-- local variables

BEGIN
sr_next <= sr;
--shift register 1 by 32
-- return sr[31]
sr_out <= sr(31);

IF shift /= '0' THEN
-- sr_new[32:1] = sr[31:1] & sr_in
sr_next <= sr(30 DOWNTO 0) & sr_in;

END IF;

END PROCESS shift_reg_1by32;

The Shift Registers/shift_reg_1by64 block shows a 64 bit shifter. In
this case, the shifter uses two fixed point words, to represent the operand,
overcoming the 32–bit word length limitation for fixed-point integers.

Browse the eml_hdl_incrementer model for other useful hardware elements
that can be easily implemented using the Embedded MATLAB Function Block.
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Using Fixed-Point Bitwise Functions

In this section...

“Overview” on page 10-41

“Bitwise Functions Supported for HDL Code Generation” on page 10-41

“Bit Slice and Bit Concatenation Functions” on page 10-46

“Shift and Rotate Functions” on page 10-47

Overview
The Embedded MATLAB™ Function block supports many bitwise functions
that operate on fixed-point integers of arbitrary length. For general
information on Embedded MATLAB bitwise functions, see “Bitwise Functions”
in the Fixed-Point Toolbox™ documentation.

This section describes HDL code generation support for these functions.
“Bitwise Functions Supported for HDL Code Generation” on page 10-41
summarizes the supported functions, with notes that describe considerations
specific to HDL code generation. “Bit Slice and Bit Concatenation Functions”
on page 10-46 and “Shift and Rotate Functions” on page 10-47 provide usage
examples, with corresponding Embedded MATLAB Function block code and
generated HDL code.

The Bit Twiddlers/hdl_bit_ops block in the eml_hdl_design_patterns
library provides further examples of how to use these functions for various
bit manipulation operations.

Bitwise Functions Supported for HDL Code Generation
The following table summarizes Embedded MATLAB Function block bitwise
functions that are supported for HDL code generation. The Description
column notes considerations that are specific to HDL. The following
conventions are used in the table:

• a,b: Denote fixed-point integer operands.

• idx: Denotes an index to a bit within an operand. Indexes can be scalar or
vector, depending on the function.
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Embedded MATLAB Function blocks follow the MATLAB® (1-based)
indexing conventions. In generated HDL code, such indexes are converted
to zero-based indexing conventions.

• lidx, ridx: denote indexes to the left and right boundaries delimiting bit
fields. Indexes can be scalar or vector, depending on the function.

• val: Denotes a Boolean value.

Note Indexes, operands, and values passed as arguments bitwise functions
can be scalar or vector, depending on the function. See “Bitwise Functions”
in the Fixed-Point Toolbox documentation for information on the individual
functions.

Embedded MATLAB
Function Block Syntax

Description See Also

bitand(a, b) Bitwise AND bitand

bitandreduce(a, lidx,
ridx)

Bitwise AND of a field of consecutive bits within
a. The field is delimited by lidx , ridx.

Output data type: ufix1

For VHDL, generates the bitwise AND operator
operating on a set of individual slices

For Verilog, generates the reduce operator:

&a[lidx:ridx]

bitandreduce

bitcmp(a) Bitwise complement bitcmp

10-42



Using Fixed-Point Bitwise Functions

Embedded MATLAB
Function Block Syntax

Description See Also

bitconcat(a, b)
bitconcat([a_vector])
bitconcat(a,
b,c,d,...)

Concatenate fixed-point operands.

Operands can be of different signs.

Output data type: ufixN, where N is the sum of
the word lengths of a and b.

For VHDL, generates the concatenation
operator: (a & b)

For Verilog, generates the concatenation
operator: {a , b}

bitconcat

bitget(a,idx) Access a bit at position idx.

For VHDL, generates the slice operator: a(idx)

For Verilog, generates the slice operator: a[idx]

bitget

bitor(a, b) Bitwise OR bitor

bitorreduce(a, lidx,
ridx)

Bitwise OR of a field of consecutive bits within
a. The field is delimited by lidx and ridx.

Output data type: ufix1

For VHDL, generates the bitwise OR operator
operating on a set of individual slices.

For Verilog, generates the reduce operator:

|a[lidx:ridx]

bitorreduce

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitreplicate(a, n) Concatenate bits of fi object a n times bitreplicate
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Embedded MATLAB
Function Block Syntax

Description See Also

bitror(a, idx) Rotate right.

idx must be a positive integer. The value of idx
can be greater than the word length of a. idx is
always normalized to mod(idx, wlen) ,where
wlen is the word length of a.

For VHDL, generates the ror operator.

For Verilog, generates the following expression
(where wl is the word length of a:

a >> idx || a << wl - idx

bitror

bitset(a, idx, val) Set or clear bit(s) at position idx.

If val = 0, clears the indicated bit(s).
Otherwise, sets the indicated bits.

bitset

bitshift(a, idx) Note: for efficient HDL code generation use, use
bitsll, bitsrl, or bitsra instead of bitshift.

Shift left or right, based on the positive or
negative integer value of‘idx.

idx must be an integer.

For positive values of idx, shift left idx bits.

For negative values of idx, shift right idx bits.

If idx is a variable, generated code contains
logic for both left shift and right shift.

Result values saturate if the overflowMode of a
is set to saturate.

bitshift

bitsliceget(a, lidx,
ridx)

Access consecutive set of bits from lidx to ridx.

Output data type: ufixN, where N =
lidx-ridix+1.

bitsliceget
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Embedded MATLAB
Function Block Syntax

Description See Also

bitsll(a, idx) Shift left logical.

idx must be a scalar within the range

0 <= idx < wl

where wl is the word length of a.

Overflow and rounding modes of input operand
a are ignored.

Generates sll operator in VHDL.

Generates << operator in Verilog.

bitsll

bitsra(a, idx) Shift right arithmetic.

idx must be a scalar within the range

0 <= idx < wl

where wl is the word length of a,

Overflow and rounding modes of input operand
a are ignored.

Generates sra operator in VHDL.

Generates >>> operator in Verilog.

bitsra

bitsrl(a, idx) Shift right logical.

idx must be a scalar within the range

0 <= idx < wl

where wl is the word length of a.

Overflow and rounding modes of input operand
a are ignored.

Generates srl operator in VHDL.

Generates >> operator in Verilog.

bitsrl
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Embedded MATLAB
Function Block Syntax

Description See Also

bitxor(a, b) Bitwise XOR bitxor

bitxorreduce(a, lidx,
ridx)

Bitwise XOR reduction.

Bitwise XOR of a field of consecutive bits within
a. The field is delimited by lidx and ridx.

Output data type: ufix1

For VHDL, generates a set of individual slices.

For Verilog, generates the reduce operator:

^a[lidx:ridx]

bitxorreduce

getlsb(a) Return value of LSB. getlsb

getmsb(a) Return value of MSB. getmsb

Bit Slice and Bit Concatenation Functions
This section shows you how to use the Embedded MATLAB functions
bitsliceget and bitconcat to access and manipulate bit slices (fields) in a
fixed-point or integer word. As an example, consider the operation of swapping
the upper and lower 4-bit nibbles of an 8-bit byte. The following example
accomplishes this without resorting to traditional mask-and-shift techniques.

function y = fcn(u)
% NIBBLE SWAP
y = bitconcat(

bitsliceget(u, 4, 1),
bitsliceget(u, 8, 5));

The bitsliceget and bitconcat functions map directly to slice and concat
operators in both VHDL and Verilog.

The following listing shows the corresponding generated VHDL code.

ENTITY fcn IS
PORT (

clk : IN std_logic;
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clk_enable : IN std_logic;
reset : IN std_logic;
u : IN std_logic_vector(7 DOWNTO 0);
y : OUT std_logic_vector(7 DOWNTO 0));

END nibble_swap_7b;

ARCHITECTURE fsm_SFHDL OF fcn IS

BEGIN
-- NIBBLE SWAP
y <= u(3 DOWNTO 0) & u(7 DOWNTO 4);

END fsm_SFHDL;

The following listing shows the corresponding generated Verilog code.

module fcn (clk, clk_enable, reset, u, y );
input clk;
input clk_enable;
input reset;
input [7:0] u;
output [7:0] y;

// NIBBLE SWAP
assign y = {u[3:0], u[7:4]};

endmodule

Shift and Rotate Functions
The Embedded MATLAB Function block supports shift and rotate functions
that mimic HDL-specific operators without saturation and rounding logic.

The following Embedded MATLAB code implements a barrel shifter/rotator
that performs a selected operation (based on the mode argument) on a fixed
point input operand.

function y = fcn(u, mode)
% Multi Function Barrel Shifter/Rotator
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% fixed width shift operation
fixed_width = uint8(3);

switch mode
case 1

% shift left logical
y = bitsll(u, fixed_width);

case 2
% shift right logical
y = bitsrl(u, fixed_width);

case 3
% shift right arithmetic
y = bitsra(u, fixed_width);

case 4
% rotate left
y = bitrol(u, fixed_width);

case 5
% rotate right
y = bitror(u, fixed_width);

otherwise
% do nothing
y = u;

end

In VHDL code generated for this function, the shift and rotate functions map
directly to shift and rotate instructions in VHDL.

CASE mode IS
WHEN "00000001" =>

-- shift left logical
cr := signed(u) sll 3;
y <= std_logic_vector(cr);

WHEN "00000010" =>
-- shift right logical
b_cr := signed(u) srl 3;
y <= std_logic_vector(b_cr);

WHEN "00000011" =>
-- shift right arithmetic
c_cr := SHIFT_RIGHT(signed(u) , 3);
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y <= std_logic_vector(c_cr);
WHEN "00000100" =>

-- rotate left
d_cr := signed(u) rol 3;
y <= std_logic_vector(d_cr);

WHEN "00000101" =>
-- rotate right
e_cr := signed(u) ror 3;
y <= std_logic_vector(e_cr);

WHEN OTHERS =>
-- do nothing
y <= u;

END CASE;

The corresponding Verilog code is similar, except that Verilog does not have
native operators for rotate instructions.

case ( mode)
1 :

begin
// shift left logical
cr = u <<< 3;
y = cr;

end
2 :

begin
// shift right logical
b_cr = u >> 3;
y = b_cr;

end
3 :

begin
// shift right arithmetic
c_cr = u >>> 3;
y = c_cr;

end
4 :

begin
// rotate left
d_cr = (u <<< 3) | (u >> 3);
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y = d_cr;
end

5 :
begin

// rotate right
e_cr = (u >> 3) | (u <<< 3);
y = e_cr;

end
default :

begin
// do nothing
y = u;

end
endcase
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Using Complex Signals

In this section...

“Introduction” on page 10-51

“Declaring Complex Signals” on page 10-51

“Conversion Between Complex and Real Signals” on page 10-53

“Arithmetic Operations on Complex Numbers” on page 10-53

“Support for Vectors of Complex Numbers” on page 10-57

“Other Operations on Complex Numbers” on page 10-59

Introduction
This section describes Embedded MATLAB™ Function block support
for complex data types for HDL code generation. See also the
eml_hdl_design_patterns library for numerous examples showing HDL
related applications of complex arithmetic in Embedded MATLAB Function
blocks.

Declaring Complex Signals
The following Embedded MATLAB Function block code declares several local
complex variables. x and y are declared by complex constant assignment; z is
created using the using the complex() function.

function [x,y,z] = fcn

% create 8 bit complex constants

x = uint8(1 + 2i);

y = uint8(3 + 4j);

z = uint8(complex(5, 6));

The following code example shows VHDL code generated from the previous
Embedded MATLAB Function block code.

ENTITY complex_decl IS

PORT (

clk : IN std_logic;
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clk_enable : IN std_logic;

reset : IN std_logic;

x_re : OUT std_logic_vector(7 DOWNTO 0);

x_im : OUT std_logic_vector(7 DOWNTO 0);

y_re : OUT std_logic_vector(7 DOWNTO 0);

y_im : OUT std_logic_vector(7 DOWNTO 0);

z_re : OUT std_logic_vector(7 DOWNTO 0);

z_im : OUT std_logic_vector(7 DOWNTO 0));

END complex_decl;

ARCHITECTURE fsm_SFHDL OF complex_decl IS

BEGIN

x_re <= std_logic_vector(to_unsigned(1, 8));

x_im <= std_logic_vector(to_unsigned(2, 8));

y_re <= std_logic_vector(to_unsigned(3, 8));

y_im <= std_logic_vector(to_unsigned(4, 8));

z_re <= std_logic_vector(to_unsigned(5, 8));

z_im <= std_logic_vector(to_unsigned(6, 8));

END fsm_SFHDL;

As shown in the example, all complex inputs, outputs and local variables
declared in Embedded MATLAB code expand into real and imaginary signals.
The naming conventions for these derived signals are:

• Real components have the same name as the original complex signal,
suffixed with the default string '_re' (for example, x_re). To specify
a different suffix, set the Complex real part postfix option (or the
corresponding ComplexRealPostfix CLI property)

• Imaginary components have the same name as the original complex
signal, suffixed with the string '_im' (for example, x_im). To specify a
different suffix, set the Complex imaginary part postfix option (or the
corresponding ComplexImagPostfix CLI property)

A complex variable declared in an Embedded MATLAB Function block
remains complex during the entire length of the program, following Embedded
MATLAB Function block language rules.
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Conversion Between Complex and Real Signals
The Embedded MATLAB Function block provides access to the fields of
a complex signal via the real() and imag() functions, as shown in the
following code.

function [Re_part, Im_part]= fcn(c)

% Output real and imaginary parts of complex input signal

Re_part = real(c);

Im_part = imag(c);

The coder supports these constructs, accessing the corresponding real and
imaginary signal components in generated HDL code. In the following
Verilog code example, the Embedded MATLAB Function block complex signal
variable c is flattened into the signals c_re and c_im. Each of these signals is
assigned to the output variables Re_part and Im_part, respectively.

module Complex_To_Real_Imag (clk, clk_enable, reset, c_re, c_im, Re_part, Im_part );

input clk;

input clk_enable;

input reset;

input [3:0] c_re;

input [3:0] c_im;

output [3:0] Re_part;

output [3:0] Im_part;

// Output real and imaginary parts of complex input signal

assign Re_part = c_re;

assign Im_part = c_im;

Arithmetic Operations on Complex Numbers
When generating HDL code for the Embedded MATLAB Function Block,
the coder supports the following arithmetic operators for complex numbers
composed of all base types (integer, fixed-point, double):

• Addition (+)

• Subtraction (-)
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• Multiplication (*)

The coder supports division only for the Fixed-Point Toolbox™ divide function
(see divide in the Fixed-Point Toolbox documentation). The divide function is
supported only if the base type of both complex operands is fixed-point.

As shown in the following example, the default sum and product mode
for fixed-point objects is FullPrecsion, and the CastBeforeSum property
defaults to true.

fm = hdlfimath

fm =

RoundMode: floor

OverflowMode: wrap

ProductMode: FullPrecision

MaxProductWordLength: 128

SumMode: FullPrecision

MaxSumWordLength: 128

CastBeforeSum: true

Given fixed-point operands, the coder follows full-precision cast before sum
semantics. Each addition or subtraction increases the result width by one bit.
Further casting is necessary to bring the results back to a smaller bit width.

In the following example function, two complex operands (with real and
imaginary ufix4 components) are summed, with a complex result having
real and imaginary ufix5 components. The result is then cast back to the
original bit width.

function z = fcn(x, y)

% addition of two complex numbers x,y of type 'ufix4'

% x+y will have'ufix5' type

z = x+y;

% to cast the result back to 'ufix4'

% z = fi(x + y, numerictype(x), fimath(x));
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The following example shows VHDL code generated from this function.

ENTITY complex_add_entity IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : IN std_logic_vector(3 DOWNTO 0);

x_im : IN std_logic_vector(3 DOWNTO 0);

y_re : IN std_logic_vector(3 DOWNTO 0);

y_im : IN std_logic_vector(3 DOWNTO 0);

z_re : OUT std_logic_vector(4 DOWNTO 0);

z_im : OUT std_logic_vector(4 DOWNTO 0));

END complex_add_entity;

ARCHITECTURE fsm_SFHDL OF complex_add_entity IS

BEGIN

-- addition of two complex numbers x,y of type 'ufix4'

-- x+y will have'ufix5' type

z_re <= std_logic_vector(resize(unsigned(x_re), 5) +

resize(unsigned(y_re), 5));

z_im <= std_logic_vector(resize(unsigned(x_im), 5) +

resize(unsigned(y_im), 5));

-- to cast the result back to 'ufix4' use

-- z = fi(x + y, numerictype(x), fimath(x));

END fsm_SFHDL;

Similarly, for the product operation in FullPrecision mode, the result bit
width increases to the sum of the lengths of the individual operands. Further
casting is necessary to bring the results back to a smaller bit width.

The following example function shows how the product of two complex
operands (with real and imaginary ufix4 components) can be cast back to
the original bit width.

function z = fcn(x, y)
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% Multiplication of two complex numbers x,y of type 'ufix4'

% x*y will have'ufix8' type

z = x * y;

% to cast the result back to 'ufix4'

% z = fi(x * y, numerictype(x), fimath(x));

The following example shows VHDL code generated from this function.

ENTITY complex_mul IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

x_re : IN std_logic_vector(3 DOWNTO 0);

x_im : IN std_logic_vector(3 DOWNTO 0);

y_re : IN std_logic_vector(3 DOWNTO 0);

y_im : IN std_logic_vector(3 DOWNTO 0);

z_re : OUT std_logic_vector(8 DOWNTO 0);

z_im : OUT std_logic_vector(8 DOWNTO 0));

END complex_mul;

ARCHITECTURE fsm_SFHDL OF complex_mul IS

SIGNAL pr1 : unsigned(7 DOWNTO 0);

SIGNAL pr2 : unsigned(7 DOWNTO 0);

SIGNAL pr1in : unsigned(8 DOWNTO 0);

SIGNAL pr2in : unsigned(8 DOWNTO 0);

SIGNAL pre : unsigned(8 DOWNTO 0);

SIGNAL pi1 : unsigned(7 DOWNTO 0);

SIGNAL pi2 : unsigned(7 DOWNTO 0);

SIGNAL pi1in : unsigned(8 DOWNTO 0);

SIGNAL pi2in : unsigned(8 DOWNTO 0);

SIGNAL pim : unsigned(8 DOWNTO 0);

BEGIN

-- addition of two complex numbers x,y of type 'ufix4'

-- x*y will have'ufix8' type
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pr1 <= unsigned(x_re) * unsigned(y_re);

pr2 <= unsigned(x_im) * unsigned(y_im);

pr1in <= resize(pr1, 9);

pr2in <= resize(pr2, 9);

pre <= pr1in - pr2in;

pi1 <= unsigned(x_re) * unsigned(y_im);

pi2 <= unsigned(x_im) * unsigned(y_re);

pi1in <= resize(pi1, 9);

pi2in <= resize(pi2, 9);

pim <= pi1in + pi2in;

z_re <= std_logic_vector(pre);

z_im <= std_logic_vector(pim);

-- to cast the result back to 'ufix4'

-- z = fi(x * y, numerictype(x), fimath(x));

END fsm_SFHDL;

Support for Vectors of Complex Numbers
Embedded MATLAB Function Block supports HDL code generation for
vectors of complex numbers. Like scalar complex numbers, vectors of complex
numbers are flattened down to vectors of real and imaginary parts in
generated HDL code.

For example in the following script t is a complex vector variable of base
type ufix4 and size [1,2].

function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

In the generated HDL code the variable t is broken down into real and
imaginary parts with the same two-element array of type ufix4 .

VARIABLE t_re : T_UFIX_4_2;

VARIABLE t_im : T_UFIX_4_2;

The real and imaginary parts of the complex number have the same vector of
type ufix4, as shown in the following code.
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TYPE T_UFIX_4_2 IS ARRAY (1 DOWNTO 0) of unsigned(3 DOWNTO 0);

All complex vector-based operations (+,-,* etc.,) are similarly broken down to
vectors of real and imaginary parts. Operations are performed independently
on all the elements of such vectors, following Embedded MATLAB semantics
for vectors of complex numbers.

In both VHDL and Verilog code generated for the Embedded MATLAB
Function Block, complex vector ports are always flattened. If complex
vector variables appear on inputs and outputs, real and imaginary vector
components are further flattened to scalars.

In the following Embedded MATLAB Function Block code, u1 and u2 are
scalar complex numbers and y is a vector of complex numbers.

function y = fcn(u1, u2)

t = [u1 u2];

y = t+1;

This generates the following port declarations in a VHDL entity definition.

ENTITY complex_vector IS

PORT (

clk : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

u1_re : IN std_logic_vector(3 DOWNTO 0);

u1_im : IN std_logic_vector(3 DOWNTO 0);

u2_re : IN std_logic_vector(3 DOWNTO 0);

u2_im : IN std_logic_vector(3 DOWNTO 0);

y_re_0 : OUT std_logic_vector(7 DOWNTO 0);

y_re_1 : OUT std_logic_vector(7 DOWNTO 0);

y_im_0 : OUT std_logic_vector(7 DOWNTO 0);

y_im_1 : OUT std_logic_vector(7 DOWNTO 0));
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END complex_mul;

Other Operations on Complex Numbers
The coder supports the following functions with complex operands:

• complex

• real

• imag

• conj

• transpose

• ctranspose

• isnumeric

• isreal

• isscalar

The isreal function, which always returns 0 for complex numbers, is
particularly useful for writing Embedded MATLAB algorithms that behave
differently based on whether the input is a complex or real signal.

function y = fcn(u)

% output is same as input if 'u' is real

% output is conjugate of input if 'u' is complex

if isreal(u)

y = u;

else

y = conj(u);

end

For detailed information on these functions, see “Supported Functions and
Limitations of Fixed-Point Embedded MATLAB Subset” in the Fixed-Point
Toolbox documentation.

10-59



10 Generating HDL Code with the Embedded MATLAB™ Function Block

Automatic Pipeline Insertion

In this section...

“Overview” on page 10-60

“Example: Multiplier Chain” on page 10-60

“Limitations” on page 10-66

Overview
Automatic pipeline insertion is a special optimization for HDL code
generated from Embedded MATLAB™ Function blocks or Stateflow® charts.
Automatic pipeline insertion lets you achieve higher clock rates in your HDL
applications, at the cost of some amount of latency caused by the introduction
of pipeline registers.

The coder performs automatic pipeline insertion when you specify the
{'OutputPipeline', nStages} implementation parameter for Embedded
MATLAB Function blocks or Stateflow charts in a control file. When you
specify OutputPipeline, the coder inserts pipeline stages (rather than
generating pipeline stages at the output of the HDL code) into the code
generated for these blocks whenever possible. In such cases retiming is
recommended during synthesis. The nStages argument defines the number
of pipeline stages to be inserted.

In a small number of cases, the coder generates conventional output pipeline
registers. See “Limitations” on page 10-66 for a description of these cases.

Example: Multiplier Chain
This section examines automatic pipeline insertion as applied to a simple
model that implements a chain of 5 multiplications. If you are unfamiliar
with control files and implementation parameters, see “Specifying Block
Implementations and Parameters in the Control File” on page 5-25 before
studying this example.

The example model and the associated control file are available in the demos
directory as the following files:
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MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\mpipe_multchain.mdl

MATLABROOT\toolbox\hdlcoder\hdlcoderdemos\pipeline_control.m

The root level model contains a subsystem multi_chain . The multi_chain
subsystem functions as the device under test (DUT) from which HDL code
is generated. The subsystem drives an Embedded MATLAB Function block,
mult8. The following figure shows the subsystem.

The following figure shows a chain of multiplications as coded in the mult8
Embedded MATLAB Function block.
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To apply automatic pipeline insertion to this block, the control file
pipeline_control.m must be invoked when HDL code is generated for the
DUT. The control file specifies generation of two pipeline stages for the
Embedded MATLAB Function block, as shown in the following code listing:

function c = pipeline_control

c = hdlnewcontrol(mfilename);

c.forEach('*',...

'eml_lib/Embedded MATLAB Function',{},...

'hdlstateflow.StateflowHDLInstantiation',{'OutputPipeline',2});

The following figure shows the top-level HDL Coder options for the model in
the Configuration Parameters dialog box. The options are configured so that:

• The control file pipeline_control.m is attached to the model.

• VHDL code is generated from the subsystem mpipe_multchain/mult.

• The coder will generate code and display the generated model.
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The insertion of two pipeline stages into the generated HDL code results in
a latency of two clock cycles. In the generated model, a delay of two clock
cycles is inserted before the output of the mpipe_multchain/mult subsystem.
This ensures that simulations of the model accurately reflect the behavior of
the generated HDL code. The following figure shows the inserted Integer
Delay block.
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The following listing shows the complete architecture section of the generated
code. Comments generated by the coder indicate the pipeline register
definitions. To generate more compact code, the Saturate on integer
overflow option on the mult8 Embedded MATLAB Function block has been
cleared.

ARCHITECTURE fsm_SFHDL OF mult8 IS

SIGNAL pipe_var_0_1 : real:= 0.1; -- Pipeline reg from stage 0 to stage 1

SIGNAL pipe_var_1_2 : real:= 0.1; -- Pipeline reg from stage 1 to stage 2

SIGNAL b_pipe_var_0_1 : real:= 0.1; -- Pipeline reg from stage 0 to stage 1

SIGNAL c_pipe_var_0_1 : real:= 0.1; -- Pipeline reg from stage 0 to stage 1

SIGNAL d_pipe_var_0_1 : real:= 0.1; -- Pipeline reg from stage 0 to stage 1

SIGNAL b_pipe_var_1_2 : real:= 0.1; -- Pipeline reg from stage 1 to stage 2

SIGNAL pipe_var_0_1_next : real:= 0.1;

SIGNAL pipe_var_1_2_next : real:= 0.1;
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SIGNAL b_pipe_var_0_1_next : real:= 0.1;

SIGNAL c_pipe_var_0_1_next : real:= 0.1;

SIGNAL d_pipe_var_0_1_next : real:= 0.1;

SIGNAL b_pipe_var_1_2_next : real:= 0.1;

SIGNAL y1 : real:= 0.1;

SIGNAL y2 : real:= 0.1;

SIGNAL y3 : real:= 0.1;

SIGNAL y4 : real:= 0.1;

SIGNAL y5 : real:= 0.1;

SIGNAL y6 : real:= 0.1;

BEGIN

initialize_mult8 : PROCESS (reset, clk)

-- local variables

BEGIN

IF reset = '1' THEN

pipe_var_0_1 <= 0.0;

pipe_var_1_2 <= 0.0;

b_pipe_var_0_1 <= 0.0;

c_pipe_var_0_1 <= 0.0;

d_pipe_var_0_1 <= 0.0;

b_pipe_var_1_2 <= 0.0;

ELSIF clk'EVENT AND clk= '1' THEN

IF clk_enable= '1' THEN

pipe_var_0_1 <= pipe_var_0_1_next;

pipe_var_1_2 <= pipe_var_1_2_next;

b_pipe_var_0_1 <= b_pipe_var_0_1_next;

c_pipe_var_0_1 <= c_pipe_var_0_1_next;

d_pipe_var_0_1 <= d_pipe_var_0_1_next;

b_pipe_var_1_2 <= b_pipe_var_1_2_next;

END IF;

END IF;

END PROCESS initialize_mult8;

-- A chained multiplication:

-- y = (x1*x2)*(x3*x4)*(x5*x6)*(x7*x8)

y1 <= x1 * x2;

y2 <= x3 * x4;

y3 <= x5 * x6;

y4 <= x7 * x8;
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y5 <= pipe_var_0_1 * b_pipe_var_0_1;

y6 <= c_pipe_var_0_1 * d_pipe_var_0_1;

y <= b_pipe_var_1_2 * pipe_var_1_2;

b_pipe_var_1_2_next <= y5;

d_pipe_var_0_1_next <= y4;

c_pipe_var_0_1_next <= y3;

b_pipe_var_0_1_next <= y2;

pipe_var_1_2_next <= y6;

pipe_var_0_1_next <= y1;

END fsm_SFHDL;

Limitations
The following limitations apply to automatic pipeline insertion:

• If the Embedded MATLAB Function block code or Stateflow chart contains
any matrix with a statically unresolvable index, the coder generates
pipeline registers at the output(s).

• In the current release, if the Embedded MATLAB Function block code
defines any persistent variables the coder generates pipeline registers at
the output(s).

• In the current release, if a Stateflow chart contains any state or local
variable, the coder generates pipeline registers at the output(s).

• The latencies of the operations currently chosen are approximate.
Therefore, pipelining results may not be optimal in cases where the relative
operation latencies in the target platform do not match the trend of the
chosen latencies.
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Recommended Practices

In this section...

“Introduction” on page 10-67

“Use Compiled External M-Functions on the Embedded MATLAB™ Path”
on page 10-67

“Build the Embedded MATLAB™ Code First” on page 10-67

“Use the hdlfimath Utility for Optimized FIMATH Settings” on page 10-68

“Use Optimal Fixed Point Option Settings” on page 10-69

Introduction
This section describes recommended practices when using the Embedded
MATLAB™ Function block for HDL code generation.

By setting Embedded MATLAB Function block options as described in this
section, you can significantly increase the efficiency of generated HDL code.
See “Setting Optimal Fixed Point Options for the Embedded MATLAB™
Function Block” on page 10-11 for an example.

Use Compiled External M-Functions on the Embedded
MATLAB™ Path
The coder supports HDL code generation from Embedded MATLAB Function
blocks that include compiled external M-functions. This feature lets you write
reusable M-code and call it from multiple Embedded MATLAB Function
blocks.

Such functions must be defined in M-files that are on the Embedded MATLAB
path, and must include the %#eml compilation directive. See “Adding the
Compilation Directive %#eml” in the Embedded MATLAB documentation for
information on how to create, compile, and invoke external M-functions.

Build the Embedded MATLAB™ Code First
Before generating HDL code for a subsystem containing an Embedded
MATLAB Function block, it is strongly recommended that you build the
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Embedded MATLAB code to check for errors. To build the code, select Build
from the Tools menu in the Embedded MATLAB Function block editor (or
press CTRL+B) .

Use the hdlfimath Utility for Optimized FIMATH
Settings
The M-function hdlfimath.m is a utility that defines a FIMATH specification
that is optimized for HDL code generation. It is strongly recommended that
you replace the default FIMATH for fixed-point signals specification with
a call to the hdlfimath function, as shown in the following figure.

The following listing shows the FIMATH setting defined by hdlfimath.

hdlfm = fimath(...
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'RoundMode', 'floor',...

'OverflowMode', 'wrap',...

'ProductMode', 'FullPrecision', 'ProductWordLength', 32,...

'SumMode', 'FullPrecision', 'SumWordLength', 32,...

'CastBeforeSum', true);

Note When the FIMATH OverflowMode property of the FIMATH specification
is set to 'Saturate', HDL code generation is disallowed for the following
cases:

• SumMode is set to 'SpecifyPrecision'

• ProductMode is set to 'SpecifyPrecision'

Use Optimal Fixed Point Option Settings
Use the default (Fixed-point) setting for the Treat these inherited signal
types as fi objects option , as shown in the following figure.
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Language Support

In this section...

“Fixed-Point Runtime Library Support” on page 10-71

“Variables and Constants” on page 10-72

“Use of Non-Tunable Parameter Arguments” on page 10-76

“Arithmetic Operators” on page 10-77

“Relational Operators” on page 10-77

“Logical Operators” on page 10-78

“Control Flow Statements” on page 10-79

Fixed-Point Runtime Library Support
The coder supports most of the fixed-point runtime library functions
supported by the Embedded MATLAB™ Function block. For a complete list
of these functions, see “Supported Functions and Limitations of Fixed-Point
Embedded MATLAB Subset” in the Fixed-Point Toolbox™documentation.

Some functions are not supported, or are subject to some restrictions. These
functions are summarized in the following table.

Function Restriction Notes

disp Not supported

get Not supported This function returns a
struct. Struct data types
are not supported in this
release.

pow2 Not supported

real Not supported

divide Supported, with
restrictions

The divisor must be a
constant and a power of
two.
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Function Restriction Notes

fi Supported, with
restrictions

Only the following
rounding modes are
supported: ceil, fix,
floor, nearest.

fimath Supported, with
restrictions

Only the following
rounding modes are
supported: ceil, fix,
floor, nearest.

subsasgn Supported, with
restrictions

Subscripted assignment
supported; see “Data Type
Usage” on page 10-72

subsref Supported, with
restrictions

Subscripted reference
supported; see “Data Type
Usage” on page 10-72

Variables and Constants
This section summarizes supported data types and typing rules for variable
and constants, and the use of persistent variables in modeling registers.

Data Type Usage
When generating code for the Embedded MATLAB Function block, the coder
supports a subset of MATLAB® data types. The following table summarizes
supported and unsupported data types.

Type(s) Support Notes

Integer Supported:

• uint8, uint16, uint32,

• int8, int16, int32
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Type(s) Support Notes

Real Supported:

• double

• single

HDL code generated with double
or single data types is not
synthesizable.

Character Supported:
char

Logical Supported:

Boolean

Fixed point Supported:

• Scaled (binary point only) fixed
point numbers

• Custom integers (zero binary
point)

Fixed point numbers with slope (not
equal to 1.0) and bias (not equal to
0.0) are not supported.

Maximum word size for fixed-point
numbers is 32 bits.

The convergent and matlab rounding
modes are not currently supported.
Do not specify these modes in fimath
in specifications.

Vectors Supported:

• unordered {N}

• row {1, N}

• column {N, 1}

The maximum number of vector
elements allowed is 2^32.

A variable must be fully defined
before it is subscripted.

Matrix Matrix data types are not supported
in the current release.

Struct N/A Struct data types are not supported in
the current release.

Cell arrays N/A Cell arrays are not supported in the
current release.
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Typing Ports, Variables and Constants
Strong typing rules are applied to Embedded MATLAB Function blocks, as
follows:

• All input and output port data types must be resolved at model compilation
time.

- If the data type of an input port is unspecified when the model is
compiled, the port is assigned the data type of the signal driving the port.

- If the data type of an output port is unspecified when the model
is compiled, the output port type is type is determined by the first
assignment to the output variable.

• Similarly, all constant literals are strongly typed. If you do not specify
the data type of a constant explicitly, its type is determined by internal
rules. To specify the data type of a constant, use cast functions (e.g., uint8,
uint16, etc.) or fi functions using fimath specifications.

• After you have defined a variable, do not change its data type. Variable
types cannot be changed dynamically by assigning a different value.
Dynamic typing will lead to a compile time error.

• After you have defined a variable, do not change its size. Variables cannot
be grown or resized dynamically.

• Do not use output variables to model registered output; Embedded
MATLAB Function block outputs are never persistent. Use persistent
variables for this purpose, as described in “Persistent Variables” on page
10-74.

Persistent Variables
Persistent variables let you model registers. If you need to preserve state
between invocations of an Embedded MATLAB Function block, use persistent
variables.

Each persistent variable must be initialized with a statement specifying its
size and type before it is referenced. You can initialize a persistent variable
with either a constant value or a variable, as in the following code listings:

% Initialize with a constant
persistent p;
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if isempty(p)
p = fi(0,0,8,0);

end

% Initialize with a variable
initval = fi(0,0,8,0);

persistent p;
if isempty(p)

p = initval;
end

When testing whether a persistent variable has been initialized, it is good
practice to use simple logical expressions, as in the preceding examples. Using
simple expressions ensures that the HDL code for the test is generated in the
reset process, and therefore is executed only once.

You can initialize multiple variables based on a single simple logical
expression, as in the following example:

% Initialize with variables
initval1 = fi(0,0,8,0);
initval2 = fi(0,0,7,0);

persistent p;
if isempty(p)

x = initval1;
y = initval2;

end

See also “The Incrementer Function Code” on page 10-7 for an example of the
initialization and use of a persistent variable.

Note If persistent variables are not initialized properly, unnecessary
sentinel variables can appear in the generated code.
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Limitation on Use of Persistent Variables. As described in “Using
Persistent Variables to Model State” on page 10-33, you can use persistent
variables in Embedded MATLAB code to simulate various kinds of delay
blocks.

However, note that the ports on the Embedded MATLAB Function block act as
direct feedthrough ports during simulation. The delay constructs internal to
the Embedded MATLAB Function block are not recognized during simulation.
Therefore a feedback loop in the model causes an algebraic loop condition.

To work around this limitation:

• Keep the combinatorial logic inside the Embedded MATLAB Function
block for one of the blocks in the loop which has a persistent variable for
the output or input. Remove the persistent variable.

• Place a Unit Delay block external to the Embedded MATLAB Function
block.

Use of Non-Tunable Parameter Arguments
An Embedded MATLAB function argument can be declared to be a parameter
argument by setting its Scope to Parameter in the Ports and Data Manager
GUI. Such a parameter argument does not appear as a signal port on the
block. Parameter arguments for Embedded MATLAB Function blocks do not
take their values from signals in the Simulink® model. Instead, their values
come from parameters defined in a parent Simulink masked subsystem or
variables defined in the MATLAB base workspace.

Only non-tunable parameters are supported for HDL code generation. If you
declare parameter arguments in Embedded MATLAB function code that is
intended for HDL code generation, be sure to clear the Tunable option for
each such parameter argument.

See also “Parameter Arguments in Embedded MATLAB Functions” in the
Simulink documentation.
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Arithmetic Operators
When generating code for the Embedded MATLAB Function block, the coder
supports the arithmetic operators (and their M function equivalents) listed
in the following table.

Operation Operator Syntax M Function Equivalent Fixed Point
Support?

Binary addition A+B plus(A,B) Y

Matrix Multiplication A*B mtimes(A,B) Y

Arraywise multiplication A.*B times(A,B) Y

Matrix right division A/B mrdivide(A,B) Y

Arraywise right division A./B rdivide(A,B) Y

Matrix left division A\B mldivide(A,B) Y

Arraywise left division A.\B ldivide(A,B) Y

Matrix power A^B mpower(A,B) Y

Arraywise power A.^B power(A,B) Y

Complex transpose A' ctranspose(A) Y

Matrix transpose A.' transpose(A) Y

Matrix concat [A B] None Y

Matrix index
Note: A variable must be
fully defined before it is
subscripted.

A(r c) None Y.

Relational Operators
When generating code for the Embedded MATLAB Function block, the coder
supports the relational operators (and their M function equivalents) listed
in the following table.
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Relation Operator
Syntax

M
Function
Equivalent

Fixed-Point Support?

Less than A<B lt(A,B) Y

Less than or equal to A<=B le(A,B) Y

Greater than or
equal to

A>=B ge(A,B) Y

Greater than A>B gt(A,B) Y

Equal A==B eq(A,B) Y

Not Equal A~=B ne(A,B) Y

Logical Operators
When generating code for the Embedded MATLAB Function block, the coder
supports the logical operators (and their M function equivalents) listed in the
following table.

Relation Operator
Syntax

M Function
Equivalent

Fixed-Point
Support?

Notes

Logical And A&B and(A,B) Y

Logical Or A|B or(A,B) Y

Logical Xor A xor B xor(A,B) Y

Logical
And (short
circuiting)

A&&B N/A Y Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 10-79.

Logical
Or (short
circuiting)

A||B N/A Y Use short circuiting logical
operators within conditionals.
See also “Control Flow
Statements” on page 10-79.

Element
complement

~A not(A) Y
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Control Flow Statements
When generating code for the Embedded MATLAB Function block, the
coder imposes some restrictions on the use of control flow statements and
constructs. The following table summarizes supported and unsupported
control flow statements.

Control Flow
Statement

Notes

break

continue

return

Do not use these statements within loops. Use of these statements in
a loop causes the coder to report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL

while while loops are not supported. Use of while loops causes the coder to
report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL

for for loops without static bounds are not supported. Use of for loops
without static bounds causes the coder to report the following error:

Unstructured flow graph or loop containing

[statement type] not supported for HDL

Do not use the & and | operators within conditions of a for statement.
Instead, use the && and || operators.

The Embedded MATLAB Function block does not support nonscalar
expressions in the conditions of for statements. Use the all or any
functions to collapse logical vectors into scalars.
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Control Flow
Statement

Notes

if Do not use the & and | operators within conditions of an if statement.
Instead, use the && and || operators.

The Embedded MATLAB Function block does not support nonscalar
expressions are not supported in the conditions of if statements. Use
the all or any functions to collapse logical vectors into scalars.

switch The HDL code matches the behavior of the switch statement; the
first matching case statement is executed.

Use only scalars in conditional expressions in a switch statement.

Use of fi variables in switch or case conditionals is not supported.
For HDL code generation, the usage is restricted to uint8, uint16,
uint32, sint8, sint16, and sint32.

If multiple case statements make assignments to the same variable,
then their numeric type and fimath specification should match that
variable.
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Other Limitations
This section lists other limitations that apply when generating HDL code with
the Embedded MATLAB™ Function block. These limitations are:

• The HDL compatibility checker (checkhdl) performs only a basic
compatibility check on the Embedded MATLAB Function block. HDL
related warnings or errors may arise during code generation from an
Embedded MATLAB Function block that is otherwise valid for simulation.
Such errors are reported in a separate message window.

• The Embedded MATLAB subset does not support nested functions.
Subfunctions are supported, however. For an example, see “Tutorial
Example: Incrementer” on page 10-5.

• Use of multiple values on the left side of an expression is not supported.
For example, an error results from the following assignment statement:

[t1, t2, t3] = [1, 2, 3];
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Overview of Script Generation for EDA Tools
The coder supports generation of script files for third-party electronic design
automation (EDA) tools. These scripts let you compile and simulate generated
HDL code or synthesize generated HDL code.

Using the defaults, you can automatically generate scripts for the following
tools:

• Mentor Graphics® ModelSim® simulator

• The Synplify® family of synthesis tools
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Defaults for Script Generation
By default, script generation takes place automatically, as part of the code
and test bench generation process.

All script files are generated in the target directory.

When you generate HDL code for a model or subsystem system, the coder
writes the following script files:

• system_compile.do: Mentor Graphics® ModelSim® compilation script.
This script contains commands to compile the generated code, but not to
simulate it.

• system_synplify.tcl: Synplify® synthesis script

When you generate test bench code for a model or subsystem system, the
coder writes the following script files:

• system_tb_compile.do: Mentor Graphics ModelSim compilation script.
This script contains commands to compile the generated code and test
bench.

• system_tb_sim.do: Mentor Graphics ModelSim simulation script. This
script contains commands to run a simulation of the generated code and
test bench.
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Custom Script Generation

In this section...

“Structure of Generated Script Files” on page 11-4

“Properties for Controlling Script Generation” on page 11-5

“Controlling Script Generation with the EDA Tool Scripts GUI Panel” on
page 11-8

You can enable or disable script generation and customize the names and
content of generated script files using either of the following methods:

• Use the makehdl or makehdltb functions, and pass in the appropriate
property name/property value arguments, as described in “Properties for
Controlling Script Generation” on page 11-5.

• Set script generation options in the EDA Tool Scripts pane of
theSimulink® GUI, as described in “Controlling Script Generation with the
EDA Tool Scripts GUI Panel” on page 11-8.

Structure of Generated Script Files
A generated EDA script consists of three sections, generated and executed
in the following order:

1 An initialization (Init) phase. The Init phase performs any required
setup actions, such as creating a design library or a project file. Some
arguments to the Init phase are implicit, for example, the top-level entity
or module name.

2 A command-per-file phase (Cmd). This phase of the script is called
iteratively, once per generated HDL file or once per signal. On each call, a
different file or signal name is passed in.

3 A termination phase (Term). This is the final execution phase of the script.
One application of this phase is to execute a simulation of HDL code that
was compiled in the Cmd phase. The Term phase takes no arguments.

The coder generates scripts by passing format strings to the fprintf function.
Using the GUI options (or makehdl and makehdltb properties) summarized
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in the following sections, you can pass in customized format strings to the
script generator. Some of these format strings take arguments, such as the
top-level entity or module name, or the names of the VHDL or Verilog files
in the design.

You can use any legal fprintf formatting characters. For example, '\n'
inserts a newline into the script file.

Properties for Controlling Script Generation
This section describes how to set properties in the makehdl or makehdltb
functions to enable or disable script generation and customize the names
and content of generated script files.

Enabling and Disabling Script Generation
The EDAScriptGeneration property controls the generation of script files. By
default, EDAScriptGeneration is set 'on'. To disable script generation, set
EDAScriptGeneration to 'off', as in the following example.

makehdl('sfir_fixed/symmetric_fir,'EDAScriptGeneration','off')

Customizing Script Names
When you generate HDL code, script names are generated by appending a
postfix string to the model or subsystem name system.

When you generate test bench code , script names are generated by appending
a postfix string to the test bench name testbench_tb.

The postfix string depends on the type of script (compilation, simulation,
or synthesis) being generated. The default postfix strings are shown in the
following table. For each type of script, you can define your own postfix using
the associated property.

Script Type Property Default Value

Compilation 'HDLCompileFilePostfix' '_compile.do'
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Script Type Property Default Value

Simulation 'HDLSimFilePostfix' '_sim.do'

Synthesis 'HDLSynthFilePostfix' '_synplify.tcl'

The following command generates VHDL code for the subsystem system,
specifying a custom postfix string for the compilation script. The name of the
generated compilation script will be system_test_compilation.do.

makehdl('mymodel/system', 'HDLCompileFilePostfix', '_test_compilation.do')

Customizing Script Code
Using the property name/property value pairs summarized in the following
table, you can pass in customized format strings to makehdl or makehdltb.
The properties are named according to the following conventions:

• Properties that apply to the initialization (Init) phase are identified by the
substring Init in the property name.

• Properties that apply to the command-per-file phase (Cmd) are identified by
the substring Cmd in the property name.

• Properties that apply to the termination (Term) phase are identified by the
substring Term in the property name.

Property Name and Default Description

Name: 'HDLCompileInit'

Default:'vlib work\n'

Format string passed to fprintf to write the Init
section of the compilation script.

Name: 'HDLCompileVHDLCmd'

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).
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Property Name and Default Description

Name: 'HDLCompileVerilogCmd'

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the file name of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name:'HDLCompileTerm'

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Name: 'HDLSimInit'

Default:

['onbreak resume\n',...
'onerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Name: 'HDLSimCmd'

Default: 'vsim work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.

Name: 'HDLSimViewWaveCmd'

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command.
The implicit argument is the top-level module or
entity name.

Name: 'HDLSimTerm'

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script

Name: 'HDLSynthInit'

Default: 'project -new %s.prj\n'

Format string passed to fprintf to write the Init
section of the synthesis script. The default string is
a synthesis project creation command. The implicit
argument is the top-level module or entity name.
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Property Name and Default Description

Name: 'HDLSynthCmd'

Default: 'add_file %s\n'

Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
file name of the entity or module.

Name: 'HDLSynthTerm'

Default:

['set_option -technology VIRTEX4\n',...

'set_option -part XC4VSX35\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

Format string passed to fprintf to write the Term
section of the synthesis script.

Example
The following example specifies a Mentor Graphics® ModelSim® command
for the Init phase of a compilation script for VHDL code generated from
the subsystem system.

makehdl(system, 'HDLCompileInit', 'vlib mydesignlib\n')

The following example lists the resultant script, system_compile.do.

vlib mydesignlib
vcom system.vhd

Controlling Script Generation with the EDA Tool
Scripts GUI Panel
The EDA Tool Scripts panel of the GUI lets you set all options that control
generation of script files. These options correspond to the properties described
in “Properties for Controlling Script Generation” on page 11-5

To view and set options in the EDA Tool Scripts GUI panel:
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1 Select Configuration Parameters from the Simulation menu in the
model window.

The Configuration Parameters dialog box opens with the Solver options
pane displayed.

2 Click the EDA Tool Scripts entry in the Select tree in the left panel of the
Configuration Parameters dialog box. By default, the EDA Tool Scripts
pane is displayed, with the Compilation script options group selected, as
shown in the following figure.

3 The Generate EDA scripts option controls the generation of script files.
By default, this option is selected.
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If you want to disable script generation, deselect this option and click
Apply.

4 The list on the left of the EDA Tool Scripts pane lets you select from
several categories of options. Select a category and set the options as
desired. The categories are

• Compilation script: Options related to customizing scripts for
compilation of generated VHDL or Verilog code. See “Compilation Script
Options” on page 11-10 for further information.

• Simulation script: Options related to customizing scripts for HDL
simulators. See “Simulation Script Options” on page 11-12 for further
information.

• Synthesis script: Options related to customizing scripts for synthesis
tools. See “Synthesis Script Options” on page 11-14 for further
information.

Compilation Script Options
The following figure shows the Compilation script pane, with all options
set to their default values.
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The following table summarizes the Compilation script options.

Option and Default Description

Compile file postfix’

'_compile.do'

Postfix string appended to the DUT name or test bench
name to form the script file name.

Name: Compile initialization

Default:'vlib work\n'

Format string passed to fprintf to write the Init
section of the compilation script.
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Option and Default Description

Name: Compile command for VHDL

Default: 'vcom %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for VHDL
files. The two arguments are the contents of the
'SimulatorFlags' property option and the filename
of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name: Compile command for
Verilog

Default: 'vlog %s %s\n'

Format string passed to fprintf to write the
Cmd section of the compilation script for Verilog
files. The two arguments are the contents of the
'SimulatorFlags' property and the filename of
the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

Name:Compile termination

Default:''

Format string passed to fprintf to write the
termination portion of the compilation script.

Simulation Script Options
The following figure shows the Simulation script pane, with all options
set to their default values.

11-12



Custom Script Generation

The following table summarizes the Simulation script options.

Option and Default Description

Simulation file postfix

'_sim.do'

Postfix string appended to the model name or test
bench name to form the simulation script file name.

Simulation initialization

Default:

['onbreak resume\nonerror resume\n']

Format string passed to fprintf to write the
initialization section of the simulation script.

Simulation command

Default: 'vsim work.%s\n'

Format string passed to fprintf to write the
simulation command. The implicit argument is the
top-level module or entity name.
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Option and Default Description

Simulation waveform viewing
command

Default: 'add wave sim:%s\n'

Format string passed to fprintf to write the
simulation script waveform viewing command. The
top-level module or entity signal names are implicit
arguments.

Simulation termination

Default: 'run -all\n'

Format string passed to fprintf to write the Term
portion of the simulation script.

Synthesis Script Options
The following figure shows the Synthesis script pane, with all options set to
their default values.
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The following table summarizes the Synthesis script options.

Option Name and Default Description

Name: Synthesis initialization

Default: 'project -new %s.prj\n'

Format string passed to fprintf to write the Init
section of the synthesis script. The default string is
a synthesis project creation command. The implicit
argument is the top-level module or entity name.

Name: Synthesis command

Default: 'add_file %s\n'

Format string passed to fprintf to write the Cmd
section of the synthesis script. The argument is the
filename of the entity or module.

Name: Synthesis termination

Default:

['set_option -technology VIRTEX4\n',...

'set_option -part XC4VSX35\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

Format string passed to fprintf to write the Term
section of the synthesis script.
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12

Properties Reference

Language Selection Properties
(p. 12-2)

Properties for selecting language of
generated HDL code

File Naming and Location Properties
(p. 12-2)

Properties that name and specify
location of generated files

Reset Properties (p. 12-2) Properties that specify reset signals
in generated code

Header Comment and General
Naming Properties (p. 12-3)

Properties affecting generation
of header comments and process,
module, component instance, and
other name strings

Script Generation Properties
(p. 12-4)

Properties affecting generation
of script files for simulation and
synthesis tools

Port Properties (p. 12-5) Properties that specify port
characteristics in generated code

Advanced Coding Properties (p. 12-6) Advanced HDL coding properties

Test Bench Properties (p. 12-7) Properties that specify generated
test bench code

Generated Model Properties (p. 12-8) Properties for controlling naming
and appearance of generated models



12 Properties Reference

Language Selection Properties
TargetLanguage Specify HDL language to use for

generated code

File Naming and Location Properties
HDLMapPostfix Specify postfix string appended to

file name for generated mapping file

TargetDirectory Identify directory into which
generated output files are written

VerilogFileExtension Specify file type extension for
generated Verilog files

VHDLFileExtension Specify file type extension for
generated VHDL files

Reset Properties
ResetAssertedLevel Specify asserted (active) level of

reset input signal

ResetLength Define length of time (in clock cycles)
during which reset is asserted

ResetType Specify whether to use asynchronous
or synchronous reset logic when
generating HDL code for registers

ResetValue Specify constant value to which test
bench forces reset input signals
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Header Comment and General Naming Properties

Header Comment and General Naming Properties
ClockProcessPostfix Specify string to append to HDL

clock process names

ComplexImagPostfix Specify string to append to imaginary
part of complex signal names

ComplexRealPostfix Specify string to append to real part
of complex signal names.

EntityConflictPostfix Specify string to append to duplicate
VHDL entity or Verilog module
names

InstancePrefix Specify string prefixed to generated
component instance names

PackagePostfix Specify string to append to specified
model or subsystem name to form
name of package file

ReservedWordPostfix Specify string appended to identifiers
for entities, signals, constants, or
other model elements that conflict
with VHDL or Verilog reserved
words

SplitArchFilePostfix Specify string to append to specified
name to form name of file containing
model’s VHDL architecture

SplitEntityArch Specify whether generated VHDL
entity and architecture code is
written to single VHDL file or to
separate files

SplitEntityFilePostfix Specify string to append to specified
model name to form name of
generated VHDL entity file

VectorPrefix Specify string prefixed to vector
names in generated code
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12 Properties Reference

Script Generation Properties
EDAScriptGeneration Enable or disable generation of

script files for third-party tools

HDLCompileFilePostfix Specify postfix string appended
to file name for generated Mentor
Graphics® ModelSim® compilation
scripts

HDLCompileInit Specify string written to
initialization section of compilation
script

HDLCompileTerm Specify string written to termination
section of compilation script

HDLCompileVerilogCmd Specify command string written to
compilation script for Verilog files

HDLCompileVHDLCmd Specify command string written to
compilation script for VHDL files

HDLSimCmd Specify simulation command written
to simulation script

HDLSimFilePostfix Specify postfix string appended
to file name for generated Mentor
Graphics ModelSim simulation
scripts

HDLSimInit Specify string written to
initialization section of simulation
script

HDLSimTerm Specify string written to termination
section of simulation script

HDLSimViewWaveCmd Specify waveform viewing command
written to simulation script

HDLSynthCmd Specify command written to
synthesis script
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Port Properties

HDLSynthFilePostfix Specify postfix string appended to
file name for generated Synplify®

synthesis scripts

HDLSynthInit Specify string written to
initialization section of synthesis
script

HDLSynthTerm Specify string written to termination
section of synthesis script

Port Properties
ClockEnableInputPort Name HDL port for model’s clock

enable input signals

ClockEnableOutputPort Specify name of clock enable output
port

ClockInputPort Name HDL port for model’s clock
input signals

EnablePrefix Specify base name string for internal
clock enables in generated code

InputType Specify HDL data type for model’s
input ports

OutputType Specify HDL data type for model’s
output ports

ResetInputPort Name HDL port for model’s reset
input
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12 Properties Reference

Advanced Coding Properties
BlockGenerateLabel Specify string to append to block

labels used for HDL GENERATE
statements

CastBeforeSum Enable or disable type casting
of input values for addition and
subtraction operations before
execution of operation

CheckHDL Check model or subsystem for HDL
code generation compatibility

HDLControlFiles Attach code generation control file
to model

HoldInputDataBetweenSamples Specify how long subrate signal
values are held in valid state

InlineConfigurations Specify whether generated VHDL
code includes inline configurations

InstanceGenerateLabel Specify string to append to instance
section labels in VHDL GENERATE
statements

LoopUnrolling Specify whether VHDL FOR and
GENERATE loops are unrolled and
omitted from generated VHDL code

OptimizeTimingController Optimize timing controller entity for
speed and code size by implementing
separate counters per rate

OutputGenerateLabel Specify string that labels output
assignment block for VHDL
GENERATE statements

PipelinePostfix Specify string to append to names
of input or output pipeline registers
generated for pipelined block
implementations
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Test Bench Properties

SafeZeroConcat Specify syntax for concatenated
zeros in generated VHDL code

UseAggregatesForConst Specify whether all constants are
represented by aggregates, including
constants that are less than 32 bits

UserComment Specify comment line in header of
generated HDL and test bench files

UseRisingEdge Specify VHDL coding style used
to check for rising edges when
operating on registers

UseVerilogTimescale Use compiler `timescale directives
in generated Verilog code

Verbosity Specify level of detail for messages
displayed during code generation

Test Bench Properties
ClockHighTime Specify period, in nanoseconds,

during which test bench drives clock
input signals high (1)

ClockLowTime Specify period, in nanoseconds,
during which test bench drives clock
input signals low (0)

ForceClock Specify whether test bench forces
clock input signals

ForceClockEnable Specify whether test bench forces
clock enable input signals

ForceReset Specify whether test bench forces
reset input signals

GenerateCoSimBlock Generate model containing HDL
Cosimulation block(s) for use in
testing DUT
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12 Properties Reference

HoldTime Specify hold time for input signals
and forced reset input signals

IgnoreDataChecking Specify number of samples during
which output data checking is
suppressed

InitializeTestBenchInputs Specify initial value driven on test
bench inputs before data is asserted
to DUT

MultifileTestBench Divide generated test bench into
helper functions, data, and HDL test
bench code files

SimulatorFlags Specify simulator flags to apply to
generated compilation scripts

TestBenchClockEnableDelay Define elapsed time (in clock cycles)
between deassertion of reset and
assertion of clock enable

TestBenchDataPostFix Specify suffix added to test bench
data file name when generating
multi-file test bench

TestBenchPostFix Specify suffix to test bench name

TestBenchReferencePostFix Specify string appended to names of
reference signals generated in test
bench code

Generated Model Properties
CodeGenerationOutput Control production of generated code

and display of generated model

Generatedmodelname Specify name of generated model

Generatedmodelnameprefix Specify prefix to name of generated
model
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Generated Model Properties

Highlightancestors Highlight ancestors of blocks in
generated model that differ from
original model

Highlightcolor Specify color for highlighted blocks
in generated model
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13

Properties — Alphabetical
List



BlockGenerateLabel

Purpose Specify string to append to block labels used for HDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to block labels used for HDL GENERATE
statements. The default string is _gen.

See Also InstanceGenerateLabel, OutputGenerateLabel
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CastBeforeSum

Purpose Enable or disable type casting of input values for addition and
subtraction operations before execution of operation

Settings 'on'(default)

Typecast input values in addition and subtraction operations to the
result type before operating on the values.

'off'

Preserve the types of input values during addition and subtraction
operations and then convert the result to the result type.

See Also InlineConfigurations, LoopUnrolling, SafeZeroConcat,
UseAggregatesForConst, UseRisingEdge, UseVerilogTimescale
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CheckHDL

Purpose Check model or subsystem for HDL code generation compatibility

Settings 'on'

Check the model or subsystem for HDL compatibility before generating
code, and report any problems encountered. This is equivalent to
executing the checkhdl function before calling makehdl.

'off' (default)

Do not check the model or subsystem for HDL compatibility before
generating code.

See Also checkhdl, makehdl
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ClockEnableInputPort

Purpose Name HDL port for model’s clock enable input signals

Settings 'string'

The default name for the model’s clock enable input port is clk_enable.

If you override the default with (for example) the string
'filter_clock_enable' for the generating subsystem filter_subsys,
the generated entity declaration might look as follows:

ENTITY filter_subsys IS

PORT( clk : IN std_logic;

filter_clock_enable : IN std_logic;

reset : IN std_logic;

filter_subsys_in : IN std_logic_vector (15 DOWNTO 0);

filter_subsys_out : OUT std_logic_vector (15 DOWNTO 0);

);

END filter_subsys;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

Usage
Notes

The clock enable signal is asserted active high (1). Thus, the input value
must be high for the generated entity’s registers to be updated.

See Also ClockInputPort, InputType, OutputType, ResetInputPort
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ClockEnableOutputPort

Purpose Specify name of clock enable output port

Settings 'string'

The default name for the generated clock enable output port is ce_out.

A clock enable output is generated when the design requires one.
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ClockHighTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals high (1)

Settings ns

The default is 5.

The ClockHighTime and ClockLowTime properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a
square wave (50% duty cycle) with a period of 10 ns.

Usage
Notes

The coder ignores this property if ForceClock is set to 'off'.

See Also ClockLowTime, ForceClock, ForceClockEnable, ForceReset, HoldTime
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ClockInputPort

Purpose Name HDL port for model’s clock input signals

Settings 'string'

The default clock input port name is clk.

If you override the default with (for example) the string 'filter_clock'
for the generated entity my_filter, the generated entity declaration
might look as follows:

ENTITY my_filter IS

PORT( filter_clock : IN std_logic;

clk_enable : IN std_logic;

reset : IN std_logic;

my_filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

my_filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

END my_filter;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

See Also ClockEnableInputPort, InputType, OutputType
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ClockLowTime

Purpose Specify period, in nanoseconds, during which test bench drives clock
input signals low (0)

Settings The default is 5 ns.

The ClockHighTime and ClockLowTime properties define the period and
duty cycle for the clock signal. Using the defaults, the clock signal is a
square wave (50% duty cycle) with a period of 10 ns.

Usage
Notes

The coder ignores this property if ForceClock is set to 'off'.

See Also ClockHighTime, ForceClock, ForceClockEnable, ForceReset,
HoldTime
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ClockProcessPostfix

Purpose Specify string to append to HDL clock process names

Settings 'string'

The default postfix is _process.

The coder uses process blocks for register operations. The label for each
of these blocks is derived from a register name and the postfix _process.
For example, the coder derives the label delay_pipeline_process in
the following block declaration from the register name delay_pipeline
and the default postfix string _process:

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

.

.

.

See Also PackagePostfix, ReservedWordPostfix
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CodeGenerationOutput

Purpose Control production of generated code and display of generated model

Settings 'GenerateHDLCode' (default)

Generate code but do not display the generated model.

'GenerateHDLCodeAndDisplayGeneratedModel'

Generate both code and model, and display model when completed.

'DisplayGeneratedModelOnly'

Create and display generated model, but do not proceed to code
generation.

See Also “Defaults and Options for Generated Models” on page 6-12
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ComplexImagPostfix

Purpose Specify string to append to imaginary part of complex signal names

Settings 'string'

The default postfix is _im.

See Also ComplexRealPostfix
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ComplexRealPostfix

Purpose Specify string to append to real part of complex signal names.

Settings 'string'

The default postfix is _re.

See Also ComplexImagPostfix
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EDAScriptGeneration

Purpose Enable or disable generation of script files for third-party tools

Settings 'on' (default)

Enable generation of script files.

'off'

Disable generation of script files.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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EnablePrefix

Purpose Specify base name string for internal clock enables in generated code

Settings 'string'

Specify the string used as the base name for internal clock enables and
other flow control signals in generated code. The default string is 'enb'.

Usage
Notes

Where only a single clock enable is generated, EnablePrefix specifies
the signal name for the internal clock enable signal.

In some cases multiple clock enables are generated (for example, when
a cascade block implementation for certain blocks is specified). In such
cases, EnablePrefix specifies a base signal name for the first clock
enable that is generated. For other clock enable signals, numeric tags
are appended to EnablePrefix to form unique signal names. For
example, the following code fragment illustrates two clock enables that
were generated when EnablePrefix was set to 'test_clk_enable' :

COMPONENT Timing_Controller
PORT( clk : IN std_logic;

reset : IN std_logic;
clk_enable : IN std_logic;
test_clk_enable : OUT std_logic;
test_clk_enable_5_1_0 : OUT std_logic
);

END COMPONENT;
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EntityConflictPostfix

Purpose Specify string to append to duplicate VHDL entity or Verilog module
names

Settings 'string'

The specified postfix resolves duplicate VHDL entity or Verilog module
names. The default string is _entity.

For example, if the coder detects two entities with the name MyFilt,
the coder names the first entity MyFilt and the second instance
MyFilt_entity.

See Also PackagePostfix, ReservedWordPostfix

13-16



ForceClock

Purpose Specify whether test bench forces clock input signals

Settings 'on' (default)

Specify that the test bench forces the clock input signals. When this
option is set, the clock high and low time settings control the clock
waveform.

'off'

Specify that a user-defined external source forces the clock input signals.

See Also ClockLowTime, ClockHighTime, ForceClockEnable, ForceReset,
HoldTime
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ForceClockEnable

Purpose Specify whether test bench forces clock enable input signals

Settings 'on' (default)

Specify that the test bench forces the clock enable input signals to
active high (1) or active low (0), depending on the setting of the clock
enable input value.

'off'

Specify that a user-defined external source forces the clock enable input
signals.

See Also ClockHighTime, ClockLowTime, ForceClock, HoldTime
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ForceReset

Purpose Specify whether test bench forces reset input signals

Settings 'on' (default)

Specify that the test bench forces the reset input signals. If you enable
this option, you can also specify a hold time to control the timing of
a reset.

'off'

Specify that a user-defined external source forces the reset input signals.

See Also ClockHighTime, ClockLowTime, ForceClock, HoldTime
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GenerateCoSimBlock

Purpose Generate model containing HDL Cosimulation block(s) for use in
testing DUT

Settings 'off' (default)

Do not generate HDL Cosimulation blocks.

'on'

If your installation is licensed for one or more of the following HDL
simulation products, the coder generates and opens a model that
contains an HDL Cosimulation block for each licensed product:

• EDA Simulator Link™ MQ

• EDA Simulator Link IN

• EDA Simulator Link DS

The generated HDL Cosimulation blocks are configured to conform to
the port and data type interface of the DUT selected for code generation..
By connecting an HDL Cosimulation block to your model in place of the
DUT, you can cosimulate your design with the desired simulator.

The coder appends the string (if any) specified by the CosimLibPostfix
property to the names of the generated HDL Cosimulation blocks.
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Generatedmodelname

Purpose Specify name of generated model

Settings 'string'

By default, the name of a generated model is the same as that of the
original model. Assign a string value to Generatemodelname to override
the default.

See Also “Defaults and Options for Generated Models” on page 6-12
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Generatedmodelnameprefix

Purpose Specify prefix to name of generated model

Settings 'string'

The default prefix is 'gm_'.

See Also “Defaults and Options for Generated Models” on page 6-12
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HDLCompileInit

Purpose Specify string written to initialization section of compilation script

Settings 'string'

The default string is 'vlib work\n'.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLCompileTerm

Purpose Specify string written to termination section of compilation script

Settings 'string'

The default is the null string ('').

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLCompileFilePostfix

Purpose Specify postfix string appended to file name for generated Mentor
Graphics® ModelSim® compilation scripts

Settings 'string'

The default postfix is _compile.do.

For example, if the name of the device under test or test bench is
my_design, the coder adds the postfix _compile.do to form the name
my_design_compile.do.
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HDLCompileVerilogCmd

Purpose Specify command string written to compilation script for Verilog files

Settings 'string'

The default string is 'vlog %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLCompileVHDLCmd

Purpose Specify command string written to compilation script for VHDL files

Settings 'string'

The default string is 'vcom %s %s\n'.

The two arguments are the contents of the 'SimulatorFlags' property
and the file name of the current entity or module. To omit the flags, set
'SimulatorFlags' to '' (the default).

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLControlFiles

Purpose Attach code generation control file to model

Settings {'string'}

Pass in a cell array containing a string that specifies a control file to
be attached to the current model. Defaults are

• File name extension: .m

• Path: the control file must be on the MATLAB® path or in the
current working directory. You can enter either a full path name
or a relative path.

Note The current release supports specification of a single control file.

Usage
Notes

To clear the property (so that no control file is invoked during code
generation), pass in a cell array containing the null string, as in the
following example:

makehdl(gcb,'HDLControlFiles',{''});

See Also For a detailed description of the structure and use of control files, see
Chapter 5, “Code Generation Control Files”.
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HDLMapPostfix

Purpose Specify postfix string appended to file name for generated mapping file

Settings 'string'

The default postfix is '_map.txt'.

For example, if the name of the device under test is my_design, the
coder adds the postfix _map.txt to form the name my_design_map.txt.
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HDLSimCmd

Purpose Specify simulation command written to simulation script

Settings 'string'

The default string is'vsim work.%s\n'.

The implicit argument is the top-level module or entity name.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSimInit

Purpose Specify string written to initialization section of simulation script

Settings 'string'

The default string is

['onbreak resume\n',...
'onerror resume\n']

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSimFilePostfix

Purpose Specify postfix string appended to file name for generated Mentor
Graphics® ModelSim® simulation scripts

Settings 'string'

The default postfix is _sim.do.

For example, if the name of your test bench file is my_design, the coder
adds the postfix _sim.do to form the name my_design_tb_sim.do.
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HDLSimTerm

Purpose Specify string written to termination section of simulation script

Settings 'string'

The default string is 'run -all\n'.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSimViewWaveCmd

Purpose Specify waveform viewing command written to simulation script

Settings 'string'

The default string is 'add wave sim:%s\n'

The implicit argument is the top-level module or entity name.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSynthCmd

Purpose Specify command written to synthesis script

Settings 'string'

The default string is 'add_file %s\n'.

The implicit argument is the file name of the entity or module.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSynthInit

Purpose Specify string written to initialization section of synthesis script

Settings 'string'

The default string is 'project -new %s.prj\n', which is a synthesis
project creation command.

The implicit argument is the top-level module or entity name.

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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HDLSynthFilePostfix

Purpose Specify postfix string appended to file name for generated Synplify®

synthesis scripts

Settings 'string'

The default postfix is _synplify.tcl.

For example, if the name of the device under test is my_design,
the coder adds the postfix _synplify.tcl to form the name
my_design_synplify.tcl.
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HDLSynthTerm

Purpose Specify string written to termination section of synthesis script

Settings 'string'

The default string is

['set_option -technology VIRTEX4\n',...

'set_option -part XC4VSX35\n',...

'set_option -synthesis_onoff_pragma 0\n',...

'set_option -frequency auto\n',...

'project -run synthesis\n']

See Also Chapter 11, “Generating Scripts for HDL Simulators and Synthesis
Tools”
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Highlightancestors

Purpose Highlight ancestors of blocks in generated model that differ from
original model

Settings 'on' (default)

Highlight blocks in a generated model that differ from the original
model, and their ancestor (parent) blocks in the model hierarchy.

'off'

Highlight only the blocks in a generated model that differ from the
original model without highlighting their ancestor (parent) blocks in
the model hierarchy.

See Also “Defaults and Options for Generated Models” on page 6-12
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Highlightcolor

Purpose Specify color for highlighted blocks in generated model

Settings 'string'

The default color specification is 'cyan'.

Specify the color as one of the following color string values:

• cyan

• yellow

• magenta

• red

• green

• blue

• white

• black

See Also “Defaults and Options for Generated Models” on page 6-12
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HoldInputDataBetweenSamples

Purpose Specify how long subrate signal values are held in valid state

Settings 'on' (default)

Data values for subrate signals are held in a valid state across N
base-rate clock cycles, where N is the number of base-rate clock cycles
that elapse per subrate sample period. (N is >= 2.)

'off'

Data values for subrate signals are held in a valid state for only one
base-rate clock cycle. For the subsequent base-rate cycles, data is in an
unknown state (expressed as 'X') until leading edge of the next subrate
sample period.

Usage
Notes

In most cases, the default ('on') is the correct setting for this property.
This setting matches the behavior of a Simulink® simulation, in which
subrate signals are always held valid through each base-rate clock
period.

In some cases (for example modeling memory or memory interfaces),
it is desirable to set HoldInputDataBetweenSamples to 'off'. In this
way you can obtain diagnostic information about when data is in an
invalid ('X') state.

See Also HoldTime, Chapter 4, “Generating HDL Code for Multirate Models”
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HoldTime

Purpose Specify hold time for input signals and forced reset input signals

Settings ns

Specify the number of nanoseconds (a positive integer) during which the
model’s data input signals and forced reset input signals are held past
the clock rising edge. The default is 2.

This option applies to reset input signals only if forced resets are
enabled.

Usage
Notes

The hold time is the amount of time that reset input signals and input
data are held past the clock rising edge. The following figures show the
application of a hold time (thold) for reset and data input signals when
the signals are forced to active high and active low.
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Hold Time for Reset Input Signals
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HoldTime
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Hold Time for Data Input Signals

Note A reset signal is always asserted for two cycles plus thold.

See Also ClockHighTime, ClockLowTime, ForceClock
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IgnoreDataChecking

Purpose Specify number of samples during which output data checking is
suppressed

Settings N

Default: 0. N must be a positive integer.

When N > 0, the test bench suppresses output data checking for the
first N output samples after the clock enable output (ce_out) is asserted.

Usage
Notes

When using pipelined block implementations, output data may be in
an invalid state for some number of samples. To avoid spurious test
bench errors, determine this number and set IgnoreDataChecking
accordingly.

Be careful to specify N correctly as a number of samples, not as a
number of clock cycles. For a single-rate model, these are equivalent,
but they are not equivalent for a multirate model.

You should use IgnoreDataChecking in cases where there is any state
(register) initial condition in the HDL code that does not match the
Simulink® state, including the following specific cases:

• When you specify the'OutputPipeline' parameter for the Embedded
MATLAB™ Function block (see “Automatic Pipeline Insertion” on
page 10-60).

• When you specify the 'ResetType','None' parameter for any of
the following block types:

- Integer Delay

- Tapped Delay

- Unit Delay

- Unit Delay Enabled

• When generating a black box interface to existing manually-written
HDL code.
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InitializeTestBenchInputs

Purpose Specify initial value driven on test bench inputs before data is asserted
to DUT

Settings 'on' (default)

Initial value driven on test bench inputs is'0'.

'off'

Initial value driven on test bench inputs is 'X' (unknown).
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InlineConfigurations

Purpose Specify whether generated VHDL code includes inline configurations

Settings 'on' (default)

Include VHDL configurations in any file that instantiates a component.

'off'

Suppress the generation of configurations and require user-supplied
external configurations. Use this setting if you are creating your own
VHDL configuration files.

Usage
Notes

VHDL configurations can be either inline with the rest of the VHDL
code for an entity or external in separate VHDL source files. By default,
the coder includes configurations for a model within the generated
VHDL code. If you are creating your own VHDL configuration files, you
should suppress the generation of inline configurations.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge
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InputType

Purpose Specify HDL data type for model’s input ports

Settings 'std_logic_vector'

Specifies VHDL type STD_LOGIC_VECTOR for the model’s input ports.

'signed/unsigned'

Specifies VHDL type SIGNED or UNSIGNED for the model’s input ports.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, OutputType
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InstanceGenerateLabel

Purpose Specify string to append to instance section labels in VHDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to instance section labels in VHDL
GENERATE statements. The default string is _gen.

See Also BlockGenerateLabel, OutputGenerateLabel
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InstancePrefix

Purpose Specify string prefixed to generated component instance names

Settings 'string'

Specify a string to be prefixed to component instance names in
generated code. The default string is u_.
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LoopUnrolling

Purpose Specify whether VHDL FOR and GENERATE loops are unrolled and
omitted from generated VHDL code

Settings 'on'

Unroll and omit FOR and GENERATE loops from the generated VHDL code.

In Verilog code, loops are always unrolled.

If you are using an electronic design automation (EDA) tool that does
not support GENERATE loops, you can enable this option to omit loops
from your generated VHDL code.

'off' (default)

Include FOR and GENERATE loops in the generated VHDL code.

Usage
Notes

The setting of this option does not affect results obtained from
simulation or synthesis of generated VHDL code.

See Also InlineConfigurations, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge
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MultifileTestBench

Purpose Divide generated test bench into helper functions, data, and HDL test
bench code files

Settings 'on'

Write separate files for test bench code, helper functions, and test
bench data. The file names are derived from the name of the DUT, the
TestBenchPostfix property, and the TestBenchDataPostfix property
as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target
language is VHDL, the default test bench file names are:

• symmetric_fir_tb.vhd: test bench code

• symmetric_fir_tb_pkg.vhd: helper functions package

• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog,
the default test bench file names are:

• symmetric_fir_tb.v: test bench code

• symmetric_fir_tb_pkg.v: helper functions package

• symmetric_fir_tb_data.v: test bench data

'off' (default)

Write a single test bench file containing all HDL test bench code and
helper functions and test bench data.

See Also TestBenchPostFix, TestBenchDataPostFix
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OptimizeTimingController

Purpose Optimize timing controller entity for speed and code size by
implementing separate counters per rate

Settings 'on' (default)

A timing controller code file (Timing_Controller.vhd or
Timing_Controller.v) is generated if required by the design, for
example:

• When code is generated for a multirate model.

• When a cascade block implementation for certain blocks is specified.

This file contains a module defining timing signals (clock, reset,
external clock enable inputs and clock enable output) in a separate
entity or module. In a multirate model, the timing controller entity
generates the required rates from a single master clock using one or
more counters and multiple clock enables.

When OptimizeTimingController is set 'on' (the default), the coder
generates multiple counters (one counter for each rate in the model).
The benefit of this optimization is that it generates faster logic, and the
size of the generated code is usually much smaller.

'off'

When OptimizeTimingController is set 'off', the timing controller
uses one counter to generate all rates in the model.

See Also Chapter 4, “Generating HDL Code for Multirate Models”, EnablePrefix
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OutputGenerateLabel

Purpose Specify string that labels output assignment block for VHDL GENERATE
statements

Settings 'string'

Specify a postfix string to append to output assignment block labels in
VHDL GENERATE statements. The default string is outputgen.

See Also BlockGenerateLabel, OutputGenerateLabel

13-53



OutputType

Purpose Specify HDL data type for model’s output ports

Settings 'std_logic_vector' (VHDL default)

Output ports have VHDL type STD_LOGIC_VECTOR.

'signed/unsigned'

Output ports have type SIGNED or UNSIGNED.

'wire' (Verilog)

If the target language is Verilog, the data type for all ports is wire. This
property is not modifiable in this case.

See Also ClockEnableInputPort, InputType
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PackagePostfix

Purpose Specify string to append to specified model or subsystem name to form
name of package file

Settings 'string'

The coder applies this option only if a package file is required for the
design. The default string is _pkg.

See Also ClockProcessPostfix, EntityConflictPostfix,
ReservedWordPostfix
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PipelinePostfix

Purpose Specify string to append to names of input or output pipeline registers
generated for pipelined block implementations

Settings 'string'

Using a control file, you can specify a generation of input and/or output
pipeline registers for selected blocks. The coder appends the string
specified by the PipelinePostfix property when generating code for
such pipeline registers. The default postfix string is _pipe.

For example, suppose you specify a pipelined output implementation for
Product blocks in a model, as in the following excerpt from a control file:

c.forEach('*',...
'built-in/Product', {},...
'hdldefaults.ProductLinearHDLEmission',...
{'OutputPipeline', 2});

The following makehdl command invokes the control file, specifying that
the string 'testpipe' is to be appended to generated pipeline registers.

makehdl([modelname, '/', topname], 'HDLControlFile',...
{'sfir_fixed_pipe1_test'},'PipelinePostfix','testpipe');

The following excerpts from generated VHDL code show an output port
definition, the associated pipeline register definition and the related
process code, implementing two pipeline stages:

SIGNAL Product_out1 : signed(32 DOWNTO 0); -- sfix33_En20

SIGNAL Product_out1testpipe : signed(32 DOWNTO 0); -- sfix33_En20

.

.

.

Product_out1testpipe <= Add_out1 * s_1;

Product1testpipe_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

int_delay_pipe_1(0 TO 1) <= (OTHERS => (OTHERS => '0'));

ELSIF clk'event AND clk = '1' THEN
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IF enb = '1' THEN

int_delay_pipe_1(0) <= Product1_out1testpipe;

int_delay_pipe_1(1) <= int_delay_pipe_1(0);

END IF;

END IF;

END PROCESS Product1testpipe_process;

Product_out1 <= int_delay_pipe(1);

See Also “Block Implementation Parameters” on page 5-60, “InputPipeline” on
page 5-60, “OutputPipeline” on page 5-61
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ReservedWordPostfix

Purpose Specify string appended to identifiers for entities, signals, constants, or
other model elements that conflict with VHDL or Verilog reserved words

Settings 'string'

The default postfix is _rsvd.

The reserved word postfix is applied identifiers (for entities, signals,
constants, or other model elements) that conflict with VHDL or Verilog
reserved words. For example, if your generating model contains a signal
named mod, the coder adds the postfix _rsvd to form the name mod_rsvd.

See Also ClockProcessPostfix, EntityConflictPostfix,
ReservedWordPostfix
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ResetAssertedLevel

Purpose Specify asserted (active) level of reset input signal

Settings 'active-high' (default)

Specify that the reset input signal must be driven high (1) to reset
registers in the model. For example, the following code fragment checks
whether reset is active high before populating the delay_pipeline
register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '1' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

'active-low'

Specify that the reset input signal must be driven low (0) to reset
registers in the model. For example, the following code fragment checks
whether reset is active low before populating the delay_pipeline
register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN

IF reset = '0' THEN
delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

See Also ResetType
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ResetInputPort

Purpose Name HDL port for model’s reset input

Settings 'string'

The default name for the model’s reset input port is reset.

If you override the default with (for example) the string 'chip_reset'
for the generating system myfilter, the generated entity declaration
might look as follows:

ENTITY myfilter IS

PORT( clk : IN std_logic;

clk_enable : IN std_logic;

chip_reset : IN std_logic;

myfilter_in : IN std_logic_vector (15 DOWNTO 0);

myfilter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END myfilter;

If you specify a string that is a VHDL or Verilog reserved word, the
code generator appends a reserved word postfix string to form a valid
VHDL or Verilog identifier. For example, if you specify the reserved
word signal, the resulting name string would be signal_rsvd. See
ReservedWordPostfix for more information.

Usage
Notes

If the reset asserted level is set to active high, the reset input signal is
asserted active high (1) and the input value must be high (1) for the
entity’s registers to be reset. If the reset asserted level is set to active
low, the reset input signal is asserted active low (0) and the input value
must be low (0) for the entity’s registers to be reset.

See Also ClockEnableInputPort, InputType, OutputType

13-60



ResetLength

Purpose Define length of time (in clock cycles) during which reset is asserted

Settings N

Default: 2. N must be an integer greater than or equal to 0.

Resetlength defines N, the number of clock cycles during which reset is
asserted. The following figure illustrates the default case, in which the
reset signal (active-high) is asserted for 2 clock cycles.
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ResetType

Purpose Specify whether to use asynchronous or synchronous reset logic when
generating HDL code for registers

Settings 'async' (default)

Use asynchronous reset logic. The following process block, generated by
a Unit Delay block, illustrates the use of asynchronous resets. When
the reset signal is asserted, the process block performs a reset, without
checking for a clock event.

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

END PROCESS Unit_Delay1_process;

'sync'

Use synchronous reset logic. Code for a synchronous reset follows. The
following process block, generated by a Unit Delay block, checks for a
clock event, the rising edge, before performing a reset:

Unit_Delay1_process : PROCESS (clk)

BEGIN

IF rising_edge(clk) THEN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;
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END PROCESS Unit_Delay1_process;

See Also ResetAssertedLevel
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ResetValue

Purpose Specify constant value to which test bench forces reset input signals

Settings 'active high' (default)

Specify that the test bench set the reset input signal to active high (1).

'active low'

Specify that the test bench set the reset input signal to active low (0).

Usage
Notes

The setting for this option must match the setting of the reset asserted
level specified for the test bench. The coder ignores the setting of this
option if forced resets are disabled.

See Also ForceReset, ResetType, ResetAssertedLevel
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SafeZeroConcat

Purpose Specify syntax for concatenated zeros in generated VHDL code

Settings 'on' (default)

Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically,
this syntax is preferred.

'off'

Use the syntax "000000..." for concatenated zeros. This syntax can be
easier to read and is more compact, but it can lead to ambiguous types.

See Also LoopUnrolling, UseAggregatesForConst, UseRisingEdge
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SimulatorFlags

Purpose Specify simulator flags to apply to generated compilation scripts

Settings 'string'

Specify options that are specific to your application and the simulator
you are using. For example, if you must use the 1076–1993 VHDL
compiler, specify the flag -93.

Usage
Notes

The flags you specify with this option are added to the compilation
command in generated compilation scripts. The simulation command
string is specified by the HDLCompileVHDLCmd or HDLCompileVerilogCmd
properties.

13-66



SplitArchFilePostfix

Purpose Specify string to append to specified name to form name of file
containing model’s VHDL architecture

Settings 'string'

The default is _arch. This option applies only if you direct the coder to
place the generated VHDL entity and architecture code in separate files.

Usage
Notes

The option applies only if you direct the coder to place the filter’s entity
and architecture in separate files.

See Also SplitEntityArch, SplitEntityFilePostfix
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SplitEntityArch

Purpose Specify whether generated VHDL entity and architecture code is
written to single VHDL file or to separate files

Settings Write the generated VHDL code to a single file.

(default)

Write the code for the generated VHDL entity and architecture to
separate files.

The names of the entity and architecture files derive from the base
file name (as specified by the generating model or subsystem name).
By default, postfix strings identifying the file as an entity (_entity)
or architecture (_arch ) are appended to the base file name. You can
override the default and specify your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd,
you can specify that the code reside in MyFIR_entity.vhd and
MyFIR_arch.vhd.

Note This property is specific to VHDL code generation. It does not
apply to Verilog code generation and should not be enabled when
generating Verilog code.

See Also SplitArchFilePostfix, SplitEntityFilePostfix
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SplitEntityFilePostfix

Purpose Specify string to append to specified model name to form name of
generated VHDL entity file

Settings 'string'

The default is _entity. This option applies only if you direct the coder to
place the generated VHDL entity and architecture code in separate files.

See Also SplitArchFilePostfix, SplitEntityArch
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TargetDirectory

Purpose Identify directory into which generated output files are written

Settings 'string'

Specify a subdirectory under the current working directory into which
generated files are written. The string can specify a complete path
name. The default string is hdlsrc.

If the target directory does not exist, the coder creates it.

See Also VerilogFileExtension, VHDLFileExtension
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TargetLanguage

Purpose Specify HDL language to use for generated code

Settings 'VHDL' (default)

Generate VHDL filter code.

'verilog'

Generate Verilog filter code.
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TestBenchClockEnableDelay

Purpose Define elapsed time (in clock cycles) between deassertion of reset and
assertion of clock enable

Settings N (integer number of clock cycles) Default: 1

The TestBenchClockEnableDelay property specifies a delay time N,
expressed in base-rate clock cycles ( the default value is 1) elapsed
between the time the reset signal is deasserted and the time the clock
enable signal is first asserted. TestBenchClockEnableDelay works in
conjunction with the HoldTime property; After deassertion of reset,
the clock enable goes high after a delay of N base-rate clock cycles plus
the delay specified by HoldTime.

In the figure below, the reset signal (active-high) deasserts after the
interval labelled Hold Time. The clock enable asserts after a further
interval labelled Clock enable delay.

See Also HoldTime, ResetLength
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TestBenchDataPostFix

Purpose Specify suffix added to test bench data file name when generating
multi-file test bench

Settings 'string'

The default postfix is '_data'.

The coder applies TestBenchDataPostFix only when generating a
multi-file test bench (i.e. when MultifileTestBench is set 'on').

For example, if the name of your DUT is my_test, and
TestBenchPostFix has the default value _tb, the coder adds the postfix
_data to form the test bench data file name my_test_tb_data.

See Also MultifileTestBench, TestBenchPostFix
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TestBenchPostFix

Purpose Specify suffix to test bench name

Settings 'string'

The default postfix is '_tb'.

For example, if the name of your DUT is my_test, the coder adds the
postfix _tb to form the name my_test_tb.

See Also MultifileTestBench, TestBenchDataPostFix
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TestBenchReferencePostFix

Purpose Specify string appended to names of reference signals generated in
test bench code

Settings 'string'

The default postfix is '_ref'.

Reference signal data is represented as arrays in the generated test
bench code. The string specified by TestBenchReferencePostFix is
appended to the generated signal names.
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UseAggregatesForConst

Purpose Specify whether all constants are represented by aggregates, including
constants that are less than 32 bits

Settings 'on'

Specify that all constants, including constants that are less than 32
bits, be represented by aggregates. The following VHDL constant
declarations show scalars less than 32 bits being declared as aggregates:

CONSTANT coeff1 :signed(15 DOWNTO 0) := (4 DOWNTO 2 => '0', 0 =>'0', OTHERS => ', ');

CONSTANT coeff2 :signed(15 DOWNTO 0) := (6 => '0', 4 DOWNTO 3 => '0',OTHERS => ', ');

'off' (default)

Specify that the coder represent constants less than 32 bits as scalars
and constants greater than or equal to 32 bits as aggregates. The
following VHDL constant declarations are examples of declarations
generated by default for values less than 32 bits:

CONSTANT coeff1 :signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15

CONSTANT coeff2 :signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15

See Also LoopUnrolling, SafeZeroConcat, UseRisingEdge
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UserComment

Purpose Specify comment line in header of generated HDL and test bench files

Settings 'string'

The comment is generated in each of the generated code and test
bench files. The code generator adds leading comment characters as
appropriate for the target language. When newlines or line feeds are
included in the string, the code generator emits single-line comments
for each newline.

For example, the following makehdl command adds two comment lines
to the header in a generated VHDL file.

makehdl(gcb,'UserComment','This is a comment line.\nThis is a second line.')

The resulting header comment block for subsystem symmetric_fir
would appear as follows:

-- -------------------------------------------------------------

--

-- Module: symmetric_fir

-- Simulink Path: sfir_fixed/symmetric_fir

-- Created: 2006-11-20 15:55:25

-- Hierarchy Level: 0

--

-- This is a comment line.

-- This is a second line.

--

-- Simulink model description for sfir_fixed:

-- This model shows how to use Simulink HDL Coder to check, generate,

-- and verify HDL for a fixed-point symmetric FIR filter.

--

-- -------------------------------------------------------------
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UseRisingEdge

Purpose Specify VHDL coding style used to check for rising edges when
operating on registers

Settings 'on'

Use the VHDL rising_edge function to check for rising edges when
operating on registers. The following code, generated from a Unit Delay
block, tests rising_edge as shown in the following PROCESS block:

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF rising_edge(clk) THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;

END PROCESS Unit_Delay1_process;

'off' (default)

Check for clock events when operating on registers. The following code,
generated from a Unit Delay block, checks for a clock event as shown in
the ELSIF statement of the following PROCESS block:

Unit_Delay1_process : PROCESS (clk, reset)

BEGIN

IF reset = '1' THEN

Unit_Delay1_out1 <= (OTHERS => '0');

ELSIF clk'event AND clk = '1' THEN

IF clk_enable = '1' THEN

Unit_Delay1_out1 <= signed(x_in);

END IF;

END IF;
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END PROCESS Unit_Delay1_process;

Usage
Notes

The two coding styles have different simulation behavior when the clock
transitions from 'X' to '1'.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst
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UseVerilogTimescale

Purpose Use compiler `timescale directives in generated Verilog code

Settings 'on' (default)

Use compiler `timescale directives in generated Verilog code.

'off'

Suppress the use of compiler `timescale directives in generated
Verilog code.

Usage
Notes

The `timescale directive provides a way of specifying different delay
values for multiple modules in a Verilog file. This setting does not affect
the generated test bench.

See Also LoopUnrolling, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge
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VectorPrefix

Purpose Specify string prefixed to vector names in generated code

Settings 'string'

Specify a string to be prefixed to vector names in generated code. The
default string is vector_of_.
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Verbosity

Purpose Specify level of detail for messages displayed during code generation

Settings n

The default for n is 0 (minimal messages displayed).

When Verbosity is set to 0, minimal code generation progress messages
are displayed as code generation proceeds. When Verbosity is set to 1,
more detailed progress messages are displayed.
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VerilogFileExtension

Purpose Specify file type extension for generated Verilog files

Settings 'string'

The default file type extension for generated Verilog files is .v.

See Also TargetLanguage
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VHDLFileExtension

Purpose Specify file type extension for generated VHDL files

Settings 'string'

The default file type extension for generated VHDL files is .vhd.

See Also TargetLanguage
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checkhdl

Purpose Check subsystem or model for compatibility with HDL code generation

Syntax checkhdl
checkhdl(bdroot)
checkhdl('modelname')
checkhdl('modelname/subsys')
checkhdl(gcb)
output = checkhdl(arg)

Description checkhdl is a utility that checks a subsystem or model for compatibility
with HDL code generation. If any incompatibilities are detected
(for example, use of unsupported blocks or illegal data type usage),
checkhdl displays information on the blocks and potential problems
in an HTML report.

checkhdl examines (by default) the current model for compatibility
with HDL code generation.

checkhdl(bdroot) examines the current model for compatibility with
HDL code generation.

checkhdl('modelname') examines the model explicitly specified by
'modelname' for compatibility with HDL code generation.

checkhdl('modelname/subsys') examines a specified subsystem
within the model specified by 'modelname' for compatibility with HDL
code generation.

'subsys' specifies the name of the subsystem to be checked. In the
current release, 'subsys' must be at the top (root) level of the current
model; it cannot be a subsystem nested at a lower level of the model
hierarchy.

checkhdl(gcb) examines the currently selected subsystem within the
current model for compatibility with HDL code generation.

checkhdl generates an HTML HDL Code Generation Check Report.
The report file-naming convention is system_report.html, where
system is the name of the subsystem or model that was passed in to
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checkhdl. The report is written to the target directory. checkhdl also
displays the report in a browser window.

The report is in table format. Each entry in the table is hyperlinked
to a block or subsystem that caused a problem. When you click the
hyperlink, the block of ineterest highlights and displays (provided that
the model referenced by the report is open).

If no errors are encountered, the report contains only a hyperlink to the
subsystem or model that was checked.

Alternatively, you can also specify an output argument, using the
following syntax:

output = checkhdl(arg)

where arg specifies a model or subsystem in any of the forms described
previously.

When an output argument is specified, checkhdl returns a 1xN struct
array with one entry for each error, warning or message. In this case, no
report is generated (see “Examples” on page 14-4).

Use checkhdl to check your subsystems or models before generating
HDL code.

checkhdl reports three levels of compatibility problems:

• Errors: Errors will cause makehdl to error out. These issues must be
fixed before HDL code can be generated. A typical error would be the
use of an unsupported data type.

• Warnings: Warnings may cause problems in the generated code, but
generally allow HDL code generation to continue. For example, the
presence of an unsupported block in the model would raise a warning.
In this case, the code generator attempts to proceed as if the block
were not present in the design. This could lead to errors later in the
code generation process, which would then terminate.

• Messages: Messages are indications that the HDL code generator
may treat data types in a way that differs from what might be
expected. For example, single-precision floating-point data types are
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automatically converted to double-precision because neither VHDL
nor Verilog support single-precision data types.

Note If a model or subsystem passes checkhdl without errors, that
does not imply that makehdl will complete successfully, since not all
block parameters are verified in this release. However, if checkhdl
reports an error, makehdl will not successfully complete HDL code
generation.

For convenience, checkhdl also takes the same property-value pairs as
makehdl and makehdltb.

Examples The following example checks the subsystem symmetric_fir within the
model sfir_fixed for HDL code generation compatibility. If problems
are encountered, an HTML report is generated.

checkhdl('sfir_fixed/symmetric_fir')

The following example checks the subsystem symmetric_fir_err
within the model sfir_fixed_err for HDL code generation
compatibility. Information on problems encountered is returned in the
struct output. The first element of output is then displayed.

output = checkhdl('sfir_fixed_err/symmetric_fir_err')

### Starting HDL Check.

...

### HDL Check Complete with 4 errors, warnings and messages.

output =

1x4 struct array with fields:

path

type

message

level
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output(1)

ans =

path: 'sfir_fixed_err/symmetric_fir_err/Product'

type: 'block'

message: 'Unhandled mixed double and non-double datatypes at ports of block'

level: 'Error'

See Also makehdl
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hdllib

Purpose Create library of blocks that support HDL code generation

Syntax hdllib

Description hdllib creates a library of blocks that are supported for HDL code
generation. The library is named hdlsupported.mdl. After the library
is generated, you must save it to a directory of your choice.

hdllib loads many block libraries during the creation of the
hdlsupported library. (This will cause a license checkout.) When
hdllib completes generation of the library, it does not unload block
libraries.

The hdlsupported library affords quick access to all supported blocks.
By constructing models using blocks from this library, you can ensure
block-level compatibility of your model with the coder.

The set of supported blocks will change in future releases of the coder.
To keep the hdlsupported.mdl current, you should rebuild the library
and table each time you install a new release.
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hdlnewcontrolfile

Purpose Generate customizable control file from selected subsystem or blocks

Syntax hdlnewcontrolfile
hdlnewcontrolfile('blockpath')
hdlnewcontrolfile({'blockpath1','blockpath2',

...'blockpathN'})

Description The coder provides the hdlnewcontrolfile utility to help you
construct code generation control files. Given a selection of one or more
blocks from your model, hdlnewcontrolfile generates a control file
containing:

• A c.generateHDLFor call specifying the full path to the currently
selected block or subsystem from which code is to be generated.

• c.forEach calls for all selected blocks that have HDL
implementations.

• Comments providing information about all supported
implementations and parameters for all selected blocks that have
HDL implementations.

• c.set calls for any global HDL Coder options that are set to
non-default values.

Generated control files are automatically opened as untitled files
in the MATLAB® editor for further customization. The file naming
sequence for successively generated control files is Untitled1,
Untitled2,...UntitledN.

To use a generated control file in code generation, you must save it and
attach it to a model. (See also “Associating an Existing Control File
with Your Model” on page 5-20.)

hdlnewcontrolfile returns a control file containing a forEach
statement and comments for each selected block in the model.

hdlnewcontrolfile('blockpath') returns a control file containing
a forEach statement and comments for the block specified by the
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'blockpath' argument. The 'blockpath' argument is a string
specifying the full Simulink® path to the desired block.

hdlnewcontrolfile({'blockpath1','blockpath2',...'blockpathN'})
returns a control file containing a forEach statement
and comments for the blocks specified by the
{'blockpath1','blockpath2',...'blockpathN'} arguments. The
{'blockpath1','blockpath2',...'blockpathN'} arguments are
passed as a cell array of strings, each string specifying the
full Simulink path to a desired block.

Usage
Notes

You can use the generated control file as:

• A starting point for development of a customized control file.

• A source of information or documentation of the HDL code generation
parameter settings in the model.

Examples % Generate control file for a specific block

hdlnewcontrolfile('sfir_fixed/symmetric_fir/Product1');

%

% Generate a control file for all currently selected blocks

hdlnewcontrolfile;

%

% Generate a control file for two specific blocks

hdlnewcontrolfile({'sfir_fixed/symmetric_fir/Add1','sfir_fixed/symmetric_fir/Product2'});
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Purpose Generate forEach calls for insertion into code generation control files

Syntax hdlnewforeach
hdlnewforeach('blockpath')
hdlnewforeach({'blockpath1','blockpath2',...})
[cmd, impl] = hdlnewforeach
[cmd, impl] = hdlnewforeach('blockpath')
[cmd, impl] = hdlnewforeach({'blockpath1','blockpath2',...})
[cmd, impl, parms] = hdlnewforeach
[cmd, impl, parms] = hdlnewforeach('blockpath')
[cmd, impl, parms] = hdlnewforeach({'blockpath1','blockpath2',

...})

Description The coder provides the hdlnewforeach utility to help you construct
forEach calls for use in code generation control files. Given a selection
of one or more blocks from your model, hdlnewforeach returns the
following for each selected block, as string data in the MATLAB®

workspace:

• A forEach call coded with the correct modelscope, blocktype, and
default implementation arguments for the block

• (Optional) A cell array of cell arrays of strings enumerating the
available implementations for the block, in package.class form

• (Optional) A cell array of cell arrays of strings enumerating the
names of implementation parameters (if any) corresponding to the
block implementations. hdlnewforeach does not list data types
and other details of block implementation parameters. See “Block
Implementation Parameters” on page 5-60 for that information.

hdlnewforeach returns a forEach call for each selected block in the
model. Each call is returned as a string.

hdlnewforeach('blockpath') returns a forEach call for a specified
block in the model. The call is returned as a string.

The 'blockpath' argument is a string specifying the full path to the
desired block.
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hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model. Each call is returned
as a string.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full path to a desired block.

[cmd, impl] = hdlnewforeach returns a forEach call for each
selected block in the model to the string variable cmd. In addition, the
call returns a cell array of cell arrays of strings (impl) enumerating the
available implementations for the block.

[cmd, impl] = hdlnewforeach('blockpath') returns a forEach call
for a specified block in the model to the string variable cmd. In addition,
the call returns a cell array of cell arrays of strings (impl) enumerating
the available implementations for the block.

The 'blockpath' argument is a string specifying the full path to the
desired block.

[cmd, impl] =
hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model to the string variable
cmd. In addition, the call returns a cell array of cell arrays of strings
(impl) enumerating the available implementations for the block.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full path to a desired block.

[cmd, impl, parms] = hdlnewforeach returns a forEach call for
each selected block in the model to the string variable cmd. In addition,
the call returns:

• A cell array of cell arrays of strings (impl) enumerating the available
implementations for the block.

• A cell array of cell arrays of strings (parms) enumerating the available
implementation parameters corresponding to each implementation.
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[cmd, impl, parms] = hdlnewforeach('blockpath') returns a
forEach call for a specified block in the model to the string variable
cmd. In addition, the call returns:

• A cell array of cell arrays of strings (impl) enumerating the available
implementations for the block.

• A cell array of cell arrays of strings (parms) enumerating the available
implementation parameters corresponding to each implementation.

The 'blockpath' argument is a string specifying the full path to the
desired block.

[cmd, impl, parms] =
hdlnewforeach({'blockpath1','blockpath2',...}) returns a
forEach call for each specified block in the model to the string variable
cmd. In addition, the call returns:

• A cell array of cell arrays of strings (impl) enumerating the available
implementations for the block.

• A cell array of cell arrays of strings (parms) enumerating the available
implementation parameters corresponding to each implementation.

The {'blockpath1','blockpath2',...} argument is a cell array of
strings, each of which specifies the full path to a desired block.

Usage
Notes

Before invoking hdlnewforeach, you must run checkhdl or makehdl
to build in-memory information about the model. If you do not run
checkhdl or makehdl, hdlnewforeach will display an error message
indicating that you should run checkhdl or makehdl.

hdlnewforeach returns an empty string for blocks that do not have an
HDL implementation. hdlnewforeach also returns an empty string for
subsystems, which are a special case. Subsystems do not have a default
implementation class, but special-purpose subsystems implementations
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are provided (see Chapter 8, “Interfacing Subsystems and Models to
HDL Code”).

After invoking hdlnewforeach, you will generally want to insert the
forEach calls returned by the function into a control file, and use
the implementation and parameter information returned to specify a
nondefault block implementation. See “Generating Selection/Action
Statements with the hdlnewforeach Function” on page 5-26 for a
worked example.

Examples The following example generates forEach commands for two explicitly
specified blocks.

hdlnewforeach({'sfir_fixed/symmetric_fir/Add4',...

'sfir_fixed/symmetric_fir/Product2'})

ans =

c.forEach('sfir_fixed/symmetric_fir/Add4',...

'built-in/Sum', {},...

'hdldefaults.SumLinearHDLEmission', {});

c.forEach('sfir_fixed/symmetric_fir/Product2',...

'built-in/Product', {},...

'hdldefaults.ProductLinearHDLEmission', {});

The following example generates a forEach command for an explicitly
specified Sum block. The implementation and parameters information
returned is listed after the forEach command.

[cmd,impl, parms] = hdlnewforeach('sfir_fixed/symmetric_fir/Add4')

cmd =

c.forEach('sfir_fixed/symmetric_fir/Add4',...

'built-in/Sum', {},...

'hdldefaults.SumLinearHDLEmission', {});
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impl =

{3x1 cell}

parms =

{1x1 cell} {1x1 cell} {1x1 cell}

>> impl{1}

ans =

'hdldefaults.SumTreeHDLEmission'

'hdldefaults.SumLinearHDLEmission'

'hdldefaults.SumCascadeHDLEmission'

>> parms{1:3}

ans =

'OutputPipeline'

ans =

'OutputPipeline'

ans =

'OutputPipeline'
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Purpose Set model parameters for HDL code generation

Syntax hdlsetup
hdlsetup('model')

Description hdlsetup changes the parameters of the current model (bdroot) to
values that are commonly used for HDL code generation.

hdlsetup('model') changes the parameters of the model specified
by the 'model' argument to values that are commonly used for HDL
code generation.

A model should be open before you invoke the hdlsetup command.

The hdlsetup command uses the set_param function to set up
models for HDL code generation quickly and consistently. The model
parameters settings provided by hdlsetup are intended as useful
defaults, but they may not be appropriate for all your applications.

To view the complete set of model parameters affected by hdlsetup,
view hdlsetup.m in the MATLAB® editor.

See the “Model Parameters” table in the “Model and Block Parameters”
section of the Simulink® documentation for a summary of user-settable
model parameters.

How hdlsetup Configures Solver Options

hdlsetup configures Solver options that are recommended or required
by the coder. These are

• Type: Fixed-step. This is the recommended solver type for most
HDL applications.

The coder currently supports variable-step solvers under the
following limited conditions:

- The device under test (DUT) is single-rate.

- The sample times of all signals driving the DUT are greater than 0.
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• Solver: discrete (no continuous states). Other fixed-step
solvers could be selected, but this option is usually the correct one
for simulating discrete systems.

• Tasking mode: SingleTasking. The coder does not currently
support models that execute in multitasking mode.

Do not set Tasking mode to Auto.
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Purpose Generate HDL RTL code from model or subsystem

Syntax makehdl()
makehdl(bdroot)
makehdl('modelname')
makehdl('modelname/subsys')
makehdl(gcb)
makehdl('PropertyName', PropertyValue,...)
makehdl(bdroot, 'PropertyName', PropertyValue,...)
makehdl('modelname', 'PropertyName', PropertyValue,...)
makehdl('modelname/subsys','PropertyName',PropertyValue,...)
makehdl(gcb, 'PropertyName', PropertyValue,...)

Description makehdl generates HDL RTL code (VHDL or Verilog) from a model or
subsystem. We will refer to a model or subsystem from which code is
generated as the device under test (DUT).

makehdl() generates HDL code from the current model (by default),
using default values for all properties.

makehdl(bdroot) generates HDL code from the current model, using
default values for all properties.

makehdl('modelname') generates HDL code from the model explicitly
specified by 'modelname', using default values for all properties.

makehdl('modelname/subsys') generates HDL code from a subsystem
within the model specified by 'modelname', using default values for all
properties.

'subsys' specifies the name of the subsystem. In the current release,
this must be a subsystem at the top (root) level of the current model; it
cannot be a subsystem nested at a lower level of the model hierarchy.

makehdl(gcb) generates HDL code from the currently selected
subsystem within the current model, using default values for all
properties.
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makehdl('PropertyName', PropertyValue,...) generates HDL code
from the current model (by default), explicitly specifying one or more
code generation options as property/value pairs.

makehdl(bdroot, 'PropertyName', PropertyValue,...) generates
HDL code from the current model, explicitly specifying one or more code
generation options as property/value pairs.

makehdl('modelname', 'PropertyName', PropertyValue,...)
generates HDL code from the model explicitly specified by 'modelname',
explicitly specifying one or more code generation options as
property/value pairs.

makehdl('modelname/subsys','PropertyName',PropertyValue,...)
generates HDL code from a subsystem within the model specified by
'modelname', explicitly specifying one or more code generation options
as property/value pairs.

'subsys' specifies the name of the subsystem. In the current release,
this must be a subsystem at the top (root) level of the current model; it
cannot be a subsystem nested at a lower level of the model hierarchy.

makehdl(gcb, 'PropertyName', PropertyValue,...) generates
HDL code from the currently selected subsystem within the current
model, explicitly specifying one or more code generation options as
property/value pairs.

Property/value pairs are passed in the form

'PropertyName', PropertyValue

These property settings determine characteristics of the generated code,
such as HDL element naming and whether certain optimizations are
applied. The next section, “HDL Code Generation Defaults” on page
14-18, summarizes the default actions of the code generator.

For detailed descriptions of each property and its effect on generated
code, see Chapter 13, “Properties — Alphabetical List” and Chapter
12, “Properties Reference”.
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HDL Code Generation Defaults

This section summarizes the default actions of the code generator. Most
defaults can be overridden by passing in appropriate property/value
settings to makehdl. Chapter 13, “Properties — Alphabetical List”
describes all makehdl properties in detail.

Target Language, File Packaging and Naming

• The TargetLanguage property determines whether VHDL or
Verilog code is generated. The default is VHDL.

• makehdl writes generated files to hdlsrc, a subdirectory of the
current working directory. This directory is called the target
directory. makehdl creates a target directory if it does not
already exist.

• makehdl generates separate HDL source files for the DUT
and each subsystem within it. In addition, makehdl generates
script files for HDL simulation and synthesis tools. File names
derive from the name of the DUT. File names are assigned by
the coder and are not user-assignable. The following table
summarizes file-naming conventions.

File Name

Verilog
source code

system.v, where system is the
name of the DUT.

VHDL
source code

system.vhd, where system is the
name of the DUT.
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File Name

Timing
controller
code

Timing_Controller.vhd (VHDL)
or Timing_Controller.v
(Verilog). This file contains a
module defining timing signals
(clock, reset, external clock
enable inputs and clock enable
output) in a separate entity or
module. Timing controller code
is generated if required by the
design; a purely combinatorial
model does not generate timing
controller code.

Mentor
Graphics®

ModelSim®

compilation
script

system_compile.do, where
system is the name of the DUT.

Synplify®

synthesis
script

system_synplify.tcl, where
system is the name of the DUT.

VHDL
package
file

system_pkg.vhd, where system
is the name of the DUT. A package
file is generated only if the design
requires a VHDL package.

Mapping
file

system_map.txt, where system is
the name of the DUT. This report
file maps generated entities
(or modules) to the subsystems
that generated them. See “Code
Tracing Using the Mapping File”
on page 7-6.
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Entities, Ports, and Signals

• Unique names are assigned to generated VHDL entities or
Verilog modules. Entity or module names are derived from the
names of the DUT. Name conflicts are resolved by the use of a
postfix string.

• HDL port names are assigned according to the following
conventions:

HDL Port Name

Input Same as corresponding
port name on the DUT (name
conflicts resolved according to
rules of the target language)

Output Same as corresponding
port name on the DUT (name
conflicts resolved according to
rules of the target language)

Clock input clk

Clock enable input clk_enable

Clock enable output ce_out

Reset input reset

• HDL port directions and data types

— Port direction: IN or OUT, corresponding to the port on the
DUT.

— Clock, clock enable, and reset port data types: VHDL type
STD_LOGIC_VECTOR or Verilog type wire.

— Input and output port data types: VHDL type
STD_LOGIC_VECTOR or Verilog type wire. Port widths are
determined by the model.

• HDL signal names and data types:
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— HDL signals generated from named signals in the model
retain their signal names.

— For unnamed signals in the model, HDL signal names are
derived from the concatenated names of the block and port
connected to the signal in the DUT: blockname_portname.
Conflicting names are made unique according to VHDL or
Verilog rules.

— Signal data types are determined by the data type of the
corresponding signal in the model. Each signal declaration is
annotated with a comment indicating the data type.

General HDL Code Settings

• VHDL-specific defaults:

— Generated VHDL files include both entity and architecture
code.

— VHDL configurations are placed in any file that instantiates
a component.

— VHDL code checks for rising edges via the logic IF
clock'event AND clock='1' THEN... , when operating
on registers.

— When creating labels for VHDL GENERATE statements,
makehdl appends _gen to section and block names. makehdl
names output assignment block labels with the string
outputgen.

• A type-safe representation is used for concatenated zeros: '0'
& '0'...

• Generated code for registers uses asynchronous reset logic with
an active-high (1) reset level.

• The postfix string _process is appended to process names.

• On Microsoft®Windows® platforms, carriage return/linefeed
(CRLF) character sequences are never emitted in generated
code.
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Code Optimizations

• In general, generated HDL code produces results that are
bit-true and cycle-accurate with respect to the original model
(that is, the HDL code exactly reproduces simulation results
from the model).

However, some block implementations generate code
that includes certain block-specific performance and area
optimizations. These optimizations can produce numeric
results or timing differences that differ from those produced
by the original model (see Chapter 6, “Generating Bit-True
Cycle-Accurate Models”).

Examples • The following call to makehdl generates Verilog code for the
subsystem symmetric_fir within the model sfir_fixed.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage', 'Verilog')

• The following call to makehdl generates VHDL code for the current
model. Code is generated into the target directory hdlsrc, with all
code generation options set to default values.

makehdl(bdroot)

• The following call to makehdl directs the HDL compatibility checker
(see checkhdl) to check the subsystem symmetric_fir within the
model sfir_fixed before code generation starts. If no compatibility
errors are encountered, makehdl generates VHDL code for the
subsystem symmetric_fir. Code is generated into the target
directory hdlsrc, with all code generation options set to default
values.

makehdl('sfir_fixed/symmetric_fir','CheckHDL','on')

See Also makehdltb, checkhdl
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Purpose Generate HDL test bench from model

Syntax makehdltb('modelname/subsys')

makehdltb('modelname/subsys', 'PropertyName', PropertyValue,

...)

Description makehdltb('modelname/subsys') generates an HDL test bench from
the specified subsystem within a model, using default values for all
properties. The modelname/subsys argument gives the path to the
subsystem under test. This subsystem must be at the top (root) level of
the current model. The generated test bench is designed to interface
to and validate HDL code generated from subsys (or from a subsystem
with a functionally identical public interface).

A typical practice is to generate HDL code for a subsystem, followed
immediately by generation of a test bench to validate the same
subsystem (see “Examples” on page 14-26).

Note If makehdl has not previously executed successfully within the
current session, makehdltb generates model code before generating
the test bench code.

Test bench code and model code must both be generated in the same
target language. If the target language specified for makehdltb differs
from the target language specified for the previous makehdl execution,
makehdltb will regenerate model code in the same language specified
for the test bench.

Properties passed in to makehdl persist after makehdl executes, and
(unless explicitly overridden) will be passed in to subsequent makehdltb
calls during the same session.

makehdltb('modelname/subsys', 'PropertyName',
PropertyValue,...) generates an HDL test bench from the specified
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subsystem within a model, explicitly specifying one or more code
generation options as property/value pairs.

Property/value pairs are passed in the form

'PropertyName', PropertyValue

These property settings determine characteristics of the test bench
code. Many of these properties are identical to those for makehdl, while
others are specific to test bench generation (for example, options for
generation of test bench stimuli). The next section, “Defaults for Test
Bench Code Generation” on page 14-24, summarizes the defaults that
are specific to generated test bench code.

For detailed descriptions of each property and its effect on generated
code, see Chapter 13, “Properties — Alphabetical List” and Chapter
12, “Properties Reference”.

Generating Stimulus and Output Data

makehdltb generates test data from signals connected to inputs of the
subsystem under test. Sample values for each stimulus signal are
computed and stored for each time step of the simulation. The signal
data is represented as arrays in the generated test bench code.

To help you validate generated HDL code, makehdltb also generates
output data from signals connected to outputs of the subsystem
under test. Like input data, sample values for each output signal are
computed and stored for each time step of the simulation. The signal
data is represented as arrays in the generated test bench code.

The total simulation time (set by the model’s Stop Time parameter)
determines the size of the stimulus and output data arrays.
Computation of sample values can be time-consuming. Consider
speeding up generation of signal data by entering a shorter Stop Time.

Defaults for Test Bench Code Generation

This section describes defaults that apply specifically to generation
of test bench code. makehdltb has many properties and defaults in

14-24



makehdltb

common with makehdl. See “HDL Code Generation Defaults” on page
14-18 for a summary of these common properties and defaults.

File Packaging and Naming
By default, makehdltb generates an HDL source file containing
test bench code and arrays of stimulus and output data. In
addition, makehdltb generates script files that let you execute
a simulation of the test bench and the HDL entity under test.
Generated test bench file names (like makehdl generated file
names) are based on the name of the DUT. The following table
summarizes the default test bench file-naming conventions.

File Name

Verilog test
bench

system_tb.v, where system is the
name of the system under test

VHDL test
bench

system_tb.vhd, where system is
the name of the system under test

Mentor
Graphics®

ModelSim®

compilation
script

system_tb_compile.do, where
system is the name of the DUT

Mentor
Graphics
ModelSim
simulation
script

system_tb_sim.do, where system
is the name of the DUT

Other Test Bench Settings

• The test bench forces clock, clock enable, and reset input
signals.

• The test bench forces clock enable and reset input to active
high (1).
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• The clock input signal is driven high (1) for 5 nanoseconds
and low (0) for 5 nanoseconds.

• The test bench forces reset signals.

• The test bench applies a hold time of 2 nanoseconds to reset
and data input signals.

Examples In the following example, makehdl generates VHDL code for the
subsystem symmetric_fir. After the coder indicates successful
completion of code generation, makehdltb generates a VHDL test bench
for the same subsystem.

makehdl('sfir_fixed/symmetric_fir')

### Applying HDL Code Generation Control Statements

### Begin VHDL Code Generation

### Working on sfir_fixed/symmetric_fir as hdlsrc\symmetric_fir.vhd

### HDL Code Generation Complete.

makehdltb('sfir_fixed/symmetric_fir')

### Begin TestBench Generation

### Generating Test bench: hdlsrc\symmetric_fir_tb.vhd

### Please wait ...

### HDL TestBench Generation Complete.

See Also makehdl
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A Examples

Generating HDL Code Using the Command Line Interface
“Creating a Directory and Local Model File” on page 2-7
“Initializing Model Parameters with hdlsetup” on page 2-8
“Generating a VHDL Entity from a Subsystem” on page 2-10
“Generating VHDL Test Bench Code” on page 2-12
“Verifying Generated Code” on page 2-13

Generating HDL Code Using the GUI
“Creating a Directory and Local Model File” on page 2-19
“Viewing Coder Options in the Configuration Parameters Dialog Box” on
page 2-20
“Creating a Control File” on page 2-22
“Initializing Model Parameters With hdlsetup” on page 2-24
“Selecting and Checking a Subsystem for HDL Compatibility” on page 2-26
“Generating VHDL Code” on page 2-28
“Generating VHDL Test Bench Code” on page 2-30
“Verifying Generated Code” on page 2-32

Verifying Generated HDL Code in an HDL Simulator
“Simulating and Verifying Generated HDL Code” on page 2-33
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IndexA
addition operations

typecasting 13-3
advanced coding properties 12-6
application-specific integrated circuits

(ASICs) 1-2
architectures

setting postfix from command line 13-67
asserted level, reset

setting 13-59
asynchronous resets

setting from command line 13-62

B
bit-true cycle-accurate models

bit-true to generated HDL code 6-2
block implementations

defined 5-4
Divide 5-30
Gain 5-30
Lookup Table 5-30
Math Function 5-30
Maximum 5-30
Minimum 5-30
MinMax 5-30
multiple 5-30
parameters for 5-60
Product of Elements 5-30
restrictions on use of 5-56
special purpose 5-30
specifying in control file 5-25
Subsystem 5-30
Sum of Elements 5-30
summary of 5-41

block labels
for GENERATE statements 13-2
for output assignment blocks 13-53
specifying postfix for 13-2

BlockGenerateLabel property 13-2

blocks
restrictions on use in test bench 5-59
supporting complex data type 5-64

blockscope 5-8

C
CastBeforeSum property 13-3
checkhdl function 14-2
CheckHDL property 13-4
clock

specifying high time for 13-7
specifying low time for 13-9

clock enable input port
specifying forced signals for 13-18

clock input port 13-8
specifying forced 13-17

clock process names
specifying postfix for 13-10

clock time
high 13-7
low 13-9

ClockEnableInputPort property 13-5
ClockEnableOutputPort property 13-6
ClockHighTime property 13-7
ClockInputPort property 13-8
ClockLowTime property 13-9
ClockProcessPostfix property 13-10
code generation control files. See control files
code, generated

advanced properties for customizing 12-6
CodeGenerationOutput property 13-11
comments, header

as property value 13-77
complex data type

blocks supporting 5-64
complex signals

in Embedded MATLAB Function block 10-51
ComplexImagPostfix property 13-12
ComplexRealPostfix property 13-13
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configuration parameters
EDA Tool Scripts pane 3-74

Compile command for Verilog 3-79
Compile command for VHDL 3-78
Compile file postfix 3-76
Compile Initialization 3-77
Compile termination 3-80
Generate EDA scripts 3-75
Simulation command 3-83
Simulation file postfix 3-81
Simulation initialization 3-82
Simulation termination 3-85
Simulation waveform viewing

command 3-84
Synthesis command 3-88
Synthesis file postfix 3-86
Synthesis initialization 3-87
Synthesis termination 3-89

Global Settings pane 3-15
Cast before sum 3-43
Clock enable output port 3-38
Clock enable port 3-19
Clock input port 3-18
Clocked process postfix 3-31
Comment in header 3-21
Complex imaginary part postfix 3-34
Complex real part postfix 3-34
Concatenate type safe zeros 3-46
Enable prefix 3-32
Entity conflict postfix 3-24
Inline VHDL configuration 3-45
Input data type 3-35
Loop unrolling 3-42
Optimize timing controller 3-47
Output data type 3-36
Package postfix 3-25
Pipeline postfix 3-33
Represent constant values by

aggregates 3-39
Reserved word postfix 3-26
Reset asserted level 3-17
Reset input port 3-20
Reset type 3-16
Split arch file postfix 3-30
Split entity and architecture 3-27
Split entity file postfix 3-29
Use "rising_edge" for registers 3-41
Use Verilog `timescale directives 3-44
Verilog file extension 3-22
VHDL file extension 3-23

HDL Coder pane 3-7
Directory 3-11
Generate HDL for: 3-9
Language 3-10

pane
File name 3-8
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Test Bench pane 3-51
Clock enable delay 3-60
Clock high time (ns) 3-54
Clock low time (ns) 3-55
Force clock 3-53
Force clock enable 3-59
Force reset 3-62
Generate cosimulation blocks 3-71
Hold input data between samples 3-64
Hold time (ns) 3-57
Ignore output data checking (number of

samples) 3-69
Initialize test bench inputs 3-65
Multi-file test bench 3-66
Reset length 3-63
Setup time (ns) 3-58
Test bench data file name postfix 3-68
Test bench name postfix 3-52

Configuration Parameters dialog box
HDL Coder options in 3-2

configurations, inline
suppressing from command line 13-46

constants
setting representation from command

line 13-76
control files

attaching to model 5-20
control object method calls in 5-8

forAll 5-13
forEach 5-8
generateHDLFor 5-14
hdlnewcontrol 5-8
hdlnewcontrolfile 5-15
set 5-13

creation of 5-16
demo for 5-5
detaching to model 5-23
loading 5-20
objects instantiated in 5-8
portability of 5-20

purpose of 5-3
required elements for 5-6
saving 5-16
selecting block implementations in 5-4
specifying implementation mappings in 5-5
statement types in

property setting 5-3
selection/action 5-3

D
data input port

specifying hold time for 13-42
demos 1-9
directory, target 13-70

E
EDAScriptGeneration property 13-14
electronic design automation (EDA) tools

generation of scripts for
customized 11-4
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limitations 10-81
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generation 10-67
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cycle-accuracy of 6-2
default options for 6-12
example of numeric differences 6-4
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makehdl properties for 6-14
naming conventions for 6-12
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HDLSimFilePostfix property 13-32
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TargetDirectory 13-70
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ResetAssertedLevel property 13-59
ResetInputPort property 13-60
ResetLength property 13-61
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TargetDirectory property 13-70
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